

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Références

GEO1303 – Méthodes sismiques 12 - Tomographie sismique en forage

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 0.9.4 Automne 2020

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Références

Introduction

- Tomographie par tracé de rai
- Tomographie en onde complète
- Références

- Tomographie : du grec *tomos* (section) et *graphein* (écrire);
- But : obtenir une image des structures situées entre les forages;

Deux approches

- Tomographie par tracé de rai
- Tomographie en onde complète
- Références

- Tomographie par tracé de rai
 - Basée sur une relation intégrale entre la mesure et la propriété recherchée;
 - Contenu fréquentiel évacué.
 - Mesure du temps d'arrivée de l'onde directe pour déterminer le champ de vitesse;
 - Mesure de l'amplitude de l'onde directe pour déterminer le champ d'atténuation.
- Tomographie basée sur l'équation d'onde
 - Résolution spatiale accrue p/r au tracé de rai;
 - Beaucoup plus lourd sur le plan du temps de calculs et du traitement des données préliminaire.

Applications

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Références

• Domaines d'application

- Caractérisation des réservoirs;
- Génie civil/géotechnique;
- Environnement.

Applications

Principes

Tomographie par tracé de rai

Tomographie en onde complète

- Avantages
 - Selon les conditions de surface, les mesures en forage permettent d'imager des régions autrement inaccessibles;
 - Bonne résolution en profondeur;
- Désavantages
 - Nécessite des trous relativement rapprochés;
 - Acquisition et traitement des données assez long.

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie en onde complète

Références

Tomographie par tracé de rai

Relation entre mesure et propriété du sol

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie en onde complète

Références

- La tomographie est basée sur une relation intégrale entre la mesure et la propriété recherchée;
- Ce type de tomographie est basé sur l'utilisation du concept de rai;
- Prenons l'exemple de la vitesse de propagation v, ou de son inverse la lenteur s $(s = v^{-1})$:
 - le temps de propagation t entre l'émetteur Tx et le récepteur Rx est

$$=\int_{T_x}^{R_x} s(l) \, dl \tag{1}$$

où l'intégration se fait le long du rai l.

Relation entre mesure et propriété du sol

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie en onde complète

- L'idée est donc de trouver *s* à partir de la connaissance de *t*;
- Il faut cependant connaître *l*;
- Le problème est non linéaire car
 - l'intégration de *s* se fait le long de *l*;
 - mais *l* dépend de *s*.
- Solution : processus itératif
 - un modèle initial est construit à partir des informations disponibles (logs de forage);
 - la modélisation par tracé de rai peut alors être réalisée.

Discrétisation du domaine

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvr

Applications

Tomographie en onde complète

Références

• Pour faire les calculs, le domaine d'intérêt doit être discrétisé en cellules de lenteur constante

Forme matricielle

Principes

Tomographie par tracé de rai

- Théorie
- Mise en œuvre

Tomographie en onde complète

Références

- Dans le domaine discret, le rai devient une juxtaposition de segments mis bouts à bouts;
- Chaque segment a une longueur égale à la portion du rai traversant la cellule;
- Le temps de parcours (1) devient une sommation sur le nombre de segments *nseg*

$$t = \sum_{j=1}^{nseg} l_j s_j \tag{2}$$

où s_i correspond à la lenteur de la cellule traversée par l_i .

- Pour un levé correspondant à *n*_o mesures, un système de *n*_o équations est construit;
- Si le domaine est composé de *n_p* cellules, il y a conséquemment *n_p* inconnues au système;

Forme matricielle

Tomographie par

Théorie

• Les n_o temps d'arrivée mesurés et n_p lenteurs inconnues sont regroupés en matrices

$$t = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_{n_o} \end{bmatrix}, \qquad s = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{n_p} \end{bmatrix}$$
(3)

• Une matrice contenant les segments de rais doit être construite :

$$L = \begin{bmatrix} l_{11} & l_{12} & \cdots & l_{1n_p} \\ l_{21} & l_{22} & \cdots & l_{2n_p} \\ \vdots & \vdots & \ddots & \vdots \\ l_{n_o1} & l_{n_o2} & \cdots & l_{n_on_p} \end{bmatrix}$$

(4)

Forme matricielle

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie en onde complète

Références

• Le système à résoudre s'écrit donc

$$Ls = t. (5)$$

• Propriétés de la matrice *L*

- elle n'est jamais carrée, i.e. n_o ≠ n_p, et en général n_o < n_p;
- elle est creuse, i.e. pour un rai *i*, certaines cellules ne sont pas traversées et les éléments de la *i*^e ligne correspondant à ces cellules sont des zéros;
- Certaines cellules sont traversées par plusieurs rais (problème sur-déterminé);
- Certaines cellules peuvent n'être traversées par aucun rai (problème sous-déterminé);
- Le système est dit « mal posé ».

Solution – moindres carrés

Principes

- Tomographie par tracé de rai
- Théorie
- Mise en œuvre
- Tomographie en onde complète
- Références

- La solution la plus courante au système (5) passe par une variante ou une autre des moindres carrés;
- Soit l'erreur entre le vecteur observé *t* et le vecteur modélisé *Ls* :

$$e = t - Ls. (6)$$

• L'objectif est de trouver le minimum de

$$e^{T}e = (t - Ls)^{T}(t - Ls);$$

$$(7)$$

• À ce minimum, la dérivé de (7) par rapport à *s* est égale à zéro

$$\frac{\partial(e^T e)}{\partial s_j} = 2\left[L^T(t - Ls)\right]_j = 0, \qquad j = 0, \dots, n_p.$$
(8)

• Sous forme matricielle

$$L^T L \hat{s} = L^T t. \tag{9}$$

Solution – moindres carrés

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie en onde complète

Références

• Pour solutionner (9), l'inverse de *L*^T*L* doit être calculée

$$\hat{s} = (L^T L)^{-1} L^T t \tag{10}$$

- Mais $L^T L$ est singulière ou quasi-singulière, et de taille imposante $(n_p \times n_p)$;
- Une solution : « régulariser » le problème;
- La norme à minimiser devient

$$\|Ls - t\| + \lambda \|Ds\| \tag{11}$$

où λ est un pondérateur lagrangien;

- Le terme *D* peut prendre plusieurs formes
 - en général, *D* correspond à la dérivée spatiale de la lenteur, ce qui impose un lissage du modèle.

Solution – Algorithmes

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie er onde complète

- Plusieurs algorithmes ont été développés pour résoudre le problème tomographique
 - rétro-projection;
 - ART;
 - SIRT;
 - CG;
 - LSQR.
 - Une revue de ces algorithmes se trouve dans Gloaguen (2004) et Hardage (1992).

Solution – Géostatistique

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie er onde complète

Références

- Le pondérateur lagrangien λ doit être déterminé par essai/erreur (méthodes automatiques peu robustes ou très coûteuses en calcul);
- On peut s'affranchir de λ en travaillant avec le modèle de covariance, c'est l'approche géostatistique :
 - la covariance des données est calculée $C_t = t t^T$;
 - C_t est reliée à la covariance du modèle C_s

$$C_t = LC_s L^T + C_0 \tag{12}$$

où C_0 représente la variance sur la mesure;

- avec (12), on peut déterminer C_s;
- on peut alors calculer la covariance entre les temps et les lenteurs :

$$C_{ts} = LC_s. \tag{13}$$

Solution – Géostatistique

Principes

Tomographie par tracé de rai

Théorie

- Mise en œuvre
- Tomographie en onde complète
- Références

- Connaisant *C*_{ts}, on peut cokriger la lenteur à partir des temps;
 - Les poids de krigreage sont

$$\Lambda = (C_t)^{-1} C_{ts}. \tag{14}$$

• Le modèle de lenteur krigé est finalement

$$Z_g = \Lambda^T t. \tag{15}$$

- Par sa nature, l'opérateur de krigeage produit des modèles lisses.
- Il est possible d'obtenir des modèles plus «rugueux» grâce à la simulation géostatistique
 - la variabilité est définie par le modèle de covariance *C_s* ;
 - la variabilité est supportée par les données puisque *C_s* est déterminé à partir de *C_t*.

Solution – Géostatistique

Tomographie par tracé de rai

Théorie

- Mise en œuvr
- Applications
- Tomographie er onde complète
- Références

Tracé de rais

Principes

Tomographie par tracé de rai

Théorie

- Mise en œuvre
- Applications

Tomographie en onde complète

- La construction de la matrice *L* implique que le trajet du rai est connu;
- Certains algorithmes considèrent que les rais sont droits
 - le trajet est alors une simple droite entre Tx et Rx;
 - approximation valide si les variations de vitesses sont faibles.
- Cependant, si le contraste de vitesse est élevé, il faut considérer que le rai s'infléchit (principe de Fermat);
- Algorithmes de modélisation du tracé de rai :
 - algorithmes « à deux points »
 - modélisation par inflexion des rais (*ray bending*);
 - modélisation par méthode des tirs (*ray shooting*);
 - algorithmes à domaine complet (Leidenfrost et al., 1999)
 - différences finies;
 - méthode des graphes;
 - méthode de construction du front d'onde;
 - Fast marching, fast sweeping.

Tracé de rais

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie en onde complète

Références

• En général en géophysique, l'approximation du rai droit n'est pas valide

Tomographie d'atténuation

Principes

Tomographie par tracé de rai

Théorie

- Mise en œuvre
- Applications
- Tomographie en onde complète
- Références

- La mesure de l'amplitude *A* permet de retrouver l'atténuation *α*;
- L'amplitude mesurée au récepteur est fonction de plusieurs paramètres

$$A = \frac{A_0 e^{-\int \alpha(l) \, dl} \Gamma_e(\theta_e) \Gamma_r(\theta_r)}{\int dl} \tag{16}$$

où

- $1 / \int dl$ est la correction de la divergence géométrique;
- *A*⁰ est l'amplitude initiale;
- *l* représente le rai;
- $\Gamma_e(\theta_e)$ est un facteur de correction du diagramme de rayonnement de l'émetteur;
- $\Gamma_r(\theta_r)$ est un facteur de correction du gain directionnel du récepteur.
- L'idée est de sortir α de l'équation (16).

Tomographie d'atténuation

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Tomographie en onde complète

Références

- Difficultés : A_0 , Γ_e et Γ_r peuvent être difficiles à connaître/estimer;
- Le problème peut être évité en travaillant avec les spectres d'amplitude (Quan and Harris, 1997);
- Ou alors, Γ_e et Γ_r sont approximés par une fonction sinus (sin θ_e et sin θ_r);

• Sous forme discrète, l'équation (16) devient, pour le *i*^e rai

$$A_i = \frac{A_0 e^{-\sum_j \alpha_j l_{ij}} \sin \theta_e \sin \theta_r}{\sum_j l_{ij}}$$

(17)

Tomographie d'atténuation

• L'équation (17) peut se récrire

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie er onde complète

Références

$A_0 e^{-\sum_j \alpha_j l_{ij}} = \frac{A_i \sum_j l_{ij}}{\sin \theta_e \sin \theta_r},$ (18)

dont α peut être isolé en prenant le logarithme

$$\sum_{j} \alpha_{j} l_{ij} = \ln\left(\frac{A_{i} \sum_{j} l_{ij}}{\sin \theta_{e} \sin \theta_{r}}\right) - \ln(A_{0}).$$
(19)

- En général, on assume que *A*⁰ est constant pour tout le levé, on le détermine par une régression linéaire;
- On obtient finalement, sous forme matricielle

$$L\alpha = A,\tag{20}$$

où *A* contient dans ce cas les amplitudes corrigées (terme de droite de (19)).

Sources

Principes

- Tomographie par tracé de rai
- Théorie
- Mise en œuvre
- Applications
- Tomographie en onde complète
- Références

- Plusieurs types de source peuvent être utilisés :
 - explosives : cartouches (*air-gun*, *water-gun*);
 - à impact;
 - sparker, piézoélectrique.

source à impact

Principes

Tomographie par tracé de rai

Mise en œuvre

Applications

Tomographie en onde complète

Références

- La qualité de l'image obtenue par tomographie dépend
 - de la couverture de mesure;
 - de la fréquence nominale de l'onde transmise.
- De fait, la résolution est dictée par la zone de Fresnel en transmission, située à l'intérieur de

$$|t_{Tx,r} + t_{Rx,r} - t_{Tx,Rx}| \le \frac{1}{2f},$$
 (21)

où *f* est la fréquence, $t_{a,b}$ est le temps de parcours entre *a* et *b*, et *r* est un point arbitraire.

Principes

Tomographie par tracé de rai

Mise en œuvre

Applications

Tomographie en onde complète

Références

• La résolution est meilleure dans la direction du rai, que le long de l'isochrone (surface ⊥ au rai);

• Ainsi, la couverture angulaire d'un objet déterminera la capacité à le résoudre

Principes

Tomographie par tracé de rai

Mise en œuvre

Tomographie en onde complète

Références

- Le calcul de la résolution admissible dépend donc de plusieurs facteurs et est relativement complexe;
 - D'après Schuster (1996), pour deux trous espacés de $2x_0$ et de longueur *L*
 - la résolution verticale est proportionnelle à $\sqrt{\lambda x_0}$;
 - la résolution horizontale vaut $(4x_0/L)\sqrt{3x_0\lambda/4}$;

où λ est la longueur de l'onde transmise.

- Tomographie par tracé de rai
- Mise en œuvre
- Tomographie en onde complète
- Références

- La résolution est donc fonction du nombre de rais qui traverse la région;
- Rais courbes, les zones de faibles vitesses sont moins bien résolues (important d'inclure les rais dans la présentation des résultats)

Principes

Tomographie par tracé de rai

Mise en œuvre

Tomographie en onde complète

- Cas extrême : si seulement des rais horizontaux sont mesurés, alors seulement un milieu tabulaire pourra être résolu.
 - L'utilisation d'une source en surface avec des capteurs en trous de forage permet de mieux résoudre des objets verticaux
 - dans la pratique, cela peut poser des problèmes techniques.

Considérations pratiques

Principes

Tomographie par tracé de rai

Mise en œuvre Applications

Tomographie en onde complète

- La position des trous et leur déviation doit être connue avec précision
 - plus les trous sont rapprochés, plus l'erreur sur la vitesse sera grande;
- La synchronisation et la dérive du temps initial (*t*₀) doit être mesurée et corrigée.
- Le même compromis entre résolution et pénétration rencontrée avec les méthodes de surface a lieu avec les méthodes en forage.

Traitement des données

Principes

Tomographie par tracé de rai

Mise en œuvre

Applications

Tomographie en onde complète

Ondes de tube

Principes

Tomographie par tracé de rai

Mise en œuvre

Tomographie en onde complète

- Des contrastes d'impédance le long des puits génèrent des ondes de tube;
- Les ondes de tube se propagent des puits remplis d'un fluide;
- L'onde de tube est une onde d'interface apparaissant en présence d'une interface cylindrique entre deux milieux;
- L'amplitude des ondes de tube est souvent plus élevée que celle des ondes P ou S – elles peuvent contaminer considérablement les données.

Ondes de tube

Principes

Tomographie pa tracé de rai

Mise en œuvre

Tomographie

onde complète

Ondes de tube

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre Applications

Tomographie ei onde complète

Références

(a)

(b)

Principes

- Tomographie par tracé de rai
- Mise en œuvre

Applications

- Tomographie er onde complète
- Références

- Daley, T. M., Majer, E. L., and Peterson, J. E. (2004). Crosswell seismic imaging in a contaminated basalt aquifer. *Geophysics*, 69(1):16–24
 - Imagerie de zones fracturées dans un aquifère;
 - Les factures sont des chemins d'écoulement où transitent des contaminanat provenant d'un dépotoir;
 - Les zones facturées sont associées à des vitesses sismiques faibles et des atténuations élevées;

Principes

- Tomographie par tracé de rai
- Théorie
- Mise en œuvr

Applications

- Tomographie ei onde complète
- Références

Principes

Tomographie pai tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie er onde complète

- Tomographie par tracé de rai
- Théorie
- Mise en œuvre
- Applications
- Tomographie en onde complète
- Références

- Deux types de source, développées au LBNL
- Piézoélectrique
 - 800 10,000 Hz
 - source impulsive
 - portée : entre 10 et 20 m
 - 25 tirs sommées par position de tir pour rehausser S/B
- Vibrateur orbital
 - 70 400 Hz
 - génère des ondes P et S
 - portée : 57 m et plus
- Hydrophones utilisés comme capteurs
- Séparation des sources & hydrophones : 0.5 m

Principes

- Tomographie par tracé de rai
- Théorie
- Mise en œuvr

Applications

- Tomographie er onde complète
- Références

Principes

Tomographie par tracé de rai

Théorie

Applications

Tomographie e onde complète

Principes

Tomographie par tracé de rai

Théorie

Mise en œuvre

Applications

Tomographie e onde complète

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Théorie

Applications

Références

Tomographie en onde complète

Principes

Principes

- Tomographie par tracé de rai
- Tomographie en onde complète
- Théorie
- Applications
- Références

- On cherche un modèle qui permet d'ajuster le sismogramme, en partie ou en totalité;
- On doit donc modéliser le sismogramme (modèle direct), i.e. ne pas se limiter aux temps d'arrivée;
- On peut utiliser différentes formes
 - Approximation acoustique (ondes P, µ=0)

$$\rho \ddot{\mathbf{u}} = \mathbf{f} + \lambda \nabla (\nabla \cdot \mathbf{u})$$

• Milieu élastique (ondes P et S)

$$\rho \ddot{\mathbf{u}} = \mathbf{f} + (\lambda + 2\mu) \nabla (\nabla \cdot \mathbf{u}) - \mu \nabla \times (\nabla \times \mathbf{u})$$

- Milieu viscoacoustique ou viscoélastique
 - Atténuation prise en compte via des propriétés et vitesses comportant un terme complexe (v_c = v_r + iv_i);
 - Facteur de qualité sismique $Q = \text{Re}(v_c^2)/\text{Im}(v_c^2)$.

Calcul du modèle direct

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Théorie

Applications

Références

• Domaine du temps

- Différences finies (FDTD) : dérivées spatiales calculées par DF;
- Méthode pseudospectrale (PSTD) : dérivée spatiales calculées dans le domaine de Fourier ;
- Domaine des fréquences
 - On travaille avec la transformée de Fourier des signaux

 $\rho\omega^{2}\hat{\mathbf{u}}=\hat{\mathbf{f}}+(\lambda+2\mu)\nabla(\nabla\cdot\hat{\mathbf{u}})-\mu\nabla\times(\nabla\times\hat{\mathbf{u}});$

- Avantageux sur le plan du calcul numérique;
 - On travaille avec un nombre fini de fréquences *ω*;
 - Formalisme adapté au problème inverse.

Choix de la fonction à minimiser

Principes

- Tomographie par tracé de rai
- Tomographie en onde complète

Théorie

- Applications
- Références

- Soit un sismogramme (une trace) $p(x_r, t|x_s)_o$ enregistré à x_r consécutif à un tir à x_s ;
- Le résidu du sismogramme au temps *t* est noté

$$\delta p_{rs}(t) = p(x_r, t | x_s)_o - p(x_r, t | x_s)_c,$$
(22)

où $p(x_r, t | x_s)_c$ est la trace calculée;

• On cherche à minimiser le résidu, i.e.

$$E = \sum_{s} \sum_{r} \int \left[\delta p_{rs}(t)\right]^2 dt.$$
(23)

Choix de la fonction à minimiser

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Théorie

Applications

Références

- Problème avec *E* de l'éq. (23) : non linéarité vis-à-vis du modèle de vitesse → problème de convergence;
 - Fonction «hybride» : on inclut le résidu du temps d'arrivée
 - Soit le temps d'arrivée de l'onde directe observée $\tau(x_r, x_s)_o$ et calculée $\tau(x_r, x_s)_c$, le résidu vaut

$$\delta \tau_{rs} = \tau(x_r, x_s)_o - \tau(x_r, x_s)_c;$$

• La fonction hybride est alors

$$E = \frac{1}{2} \sum_{s} \sum_{r} \left((1 - \alpha) [\delta \tau_{rs}]^2 + \alpha \int [\delta p_{rs}(t)]^2 dt \right), \tag{24}$$

où α permet de pondérer un terme par rapport à l'autre.

• Modèle de vitesse initial très important : souvent obtenu par tomo par tracé de rais.

Pré-traitement des données

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Théorie

Applications

- Séquences de traitement typiques peuvent inclure
 - Élimination des ondes de tube;
 - Élimination des réflexions à l'interface air-sol;
 - Fenêtrage de l'arrivée directe et des premières millisecondes (ondes P, approximation acoustique);
 - Extraction de la fonction source;
 - Lorsque le modèle directe est 2D :
 - Transformation de la phase par $\pi/4$ et mise à l'échelle de $1/\sqrt{\omega}$ pour corriger le rayonnement 3D.

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Théorie Applications

- Pratt, R. G. and Shipp, R. M. (1999). Seismic waveform inversion in the frequency domain, part 2 : Fault delineation in sediments using crosshole data. *Geophysics*, 64(3) :902–914;
 - Objectif : imager une faille dans des roches sédimentaires ;
 - Modèle direct :
 - Approximation viscoacoustique;
 - *Q* constant sur le domaine;
 - Domaine des fréquences;

- Tomographie par tracé de rai
- Tomographie en onde complète
- Applications
- Références

Tomographie pai tracé de rai

Tomographie en onde complète

Applications

Références

• Tomogramme de vitesse obtenu par tracé de rais

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Applications

Principes

Tomographie par tracé de rai

Tomographie en onde complète Théorie

Applications

- a) Données après fenêtrage;
- b) Sismogrammes modélisés avec le modèle obtenu par tracé de rais;
- c) Sismogrammes a) et b) superposés.

Principes

- Tomographie par tracé de rai
- Tomographie en onde complète Théorie
- Applications
- Références

• Amplitudes des traces synthétiques contrôlées par ajustement du terme source.

Data and model amplitudes

- Tomographie par tracé de rai
- Tomographie en onde complète
- Applications
- Références

- Anisotropie observée;
- Prise en compte en «étirant» une dimension;
- Anisotropie de 24% utilisée.

- Tomographie par tracé de rai
- Tomographie en onde complète
- Applications
- Références

Tomographie pa tracé de rai

Tomographie er onde complète Théorie Applications

- a) Données après fenêtrage;
- b) Sismogrammes modélisés avec le modèle viscoacoustique;
- c) Sismogrammes a) et b) superposés.

Principes

Tomographie par tracé de rai

Tomographie en onde complète

Références

Références

Principes

Tomographie par tracé de rai

Tomographie en onde complète

- Gloaguen, E. (2004). *Tomographie de radar en forage*. PhD thesis, École Polytechnique de Montréal, Montréal, Qc;
- Hardage, B. A. (1992). Crosswell seismology and reverse VSP. Geophysical Press;
- Leidenfrost, A., Ettrich, N., Gajewski, D., and Kosloff, D. (1999). Comparison of six different methods for calculating traveltimes. *Geophysical Prospecting*, 47 :269–297;

Références

Principes

Tomographie par tracé de rai

Tomographie en onde complète

- Pratt, R. G. and Shipp, R. M. (1999). Seismic waveform inversion in the frequency domain, part 2 : Fault delineation in sediments using crosshole data. *Geophysics*, 64(3) :902–914;
- Quan, Y. and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. *Geophysics*, 62 :895–905;
- Schuster, G. T. (1996). Resolution limits for crosswell migration and traveltime tomography. *Geophysical Journal International*, 127 :427–440.