

Modélisation en ondes complètes – Sismique

Références

GEO1302 – Modélisation et inversion en géophysique 3 - Géoradar et sismique

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.2.4 Hiver 2020

Modélisation en ondes complètes – Sismique

Références

- Modélisation en ondes complètes – Sismique
- Références

- Avec le géoradar ou en sismique, une source permet de générer une onde qui se propage dans le milieu et qui est éventuellement enregistrée à un ou des capteurs localisés à une certaine distance de la source.
- Selon l'application, on peut être intéressé à modéliser
 - la forme de l'onde complète,
 - le temps d'arrivée d'une phase particulière (P ou S, réfléchie, directe, réfractée, ...),
 - sa trajectoire et/ou
 - son amplitude.
- Ces applications sont principalement la migration et la tomographie.

Introduction

Modélisation en ondes complètes – Sismique

Introduction

Modélisation en ondes complètes – Sismique

- On distingue *grosso modo* trois familles de méthodes pour modéliser les phénomènes ondulatoires :
 - La modélisation en ondes complètes (*full waveform modeling*), où un système d'équation aux dérivées partielles est solutionné sur un maillage numérique;
 - Le tracé de rais (*ray tracing*), qui repose sur une solution asymptotique en haute fréquence;
 - Les méthodes intégrales (*Integral-equation methods*), basées sur le principe de Huygens (superposition de fronts d'ondes originants de sources ponctuelles).
- Chaque famille compte elle-même plusieurs méthodes et algorithmes :
 - formalisme en temps ou en fréquences,
 - différences finies, éléments finis, éléments spectraux, méthode pseudospectrale,
 - inflexion des rais (*ray bending*), méthode des tirs (*ray shooting*), méthode des graphes,
 - et *tutti quanti*.

Introduction

Modélisation en ondes complètes – Sismique

- Que ce soit en sismique ou en géoradar (EM), il est fréquent de faire des hypothèses simplificatrices pour accélérer les calculs;
 - Général : modélisation 1D, 2D ou 2.5D, ignorer l'anisotropie, ignorer la non linéarité des propriétés du milieu;
 - Sismique : négliger le module de cisaillement et modéliser l'onde P seulement, ignorer les interactions matrice poreuse/fluides;
 - EM : négliger la conductivité électrique.
- Également, il est important de se rappeler que le tracé de rai est en soi une simplification (on considère une fréquence infinie).
- Ces simplifications peuvent très bien être justifiées, il demeure néanmoins important de rester conscient des implications qu'elles entraînent, en particulier lorsqu'on souhaite ajuster un modèle à des données expérimentales.

Modélisation en ondes complètes – Sismique								
Références	Small scale velocity perturbations							
	no scattering	scattering						
	•							
			http://web.utah.edu/thorne					

Modélisation en ondes complètes – Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - March

temporelle

-DTD - Stabilite

DTD - Dispersion

=DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

Modélisation en ondes complètes – Sismique

Généralités

Introduction

Modélisation en ondes complètes – Sismique

Généralités

Théorie

- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- -------DTD - Stabilité
- FDTD Dispersion
- DTD Cond. limites
- FDTD PML

- Avec la modélisation en onde complète, le milieu géologique est représenté par un maillage numérique, sur un domaine spatial fini.
- Les équations aux dérivées partielles peuvent être solutionnées par différences finies, éléments finis, etc.
- Pour un formalisme dans le domaine du temps, la variable temporelle *t* doit être discrétisée;
 - une *marche temporelle* doit être effectuée pour simuler la progression du front d'onde.
- Pour un formalisme dans le domaine des fréquences, le front d'onde est modélisé fréquence par fréquence ;
 - peut s'avérer avantageux en inversion en onde complète.
- Le front d'onde en entier est modélisé sur tout le domaine spatial considéré;
 - il est important d'imposer des conditions aux limites *absorbantes* aux frontières du domaine, pour éviter des réflexions artificielles et simuler adéquatement le fait qu'une onde réelle se propagerait au delà du domaine numérique.

Introduction

Modélisation en ondes complètes – Sismique

- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- D444-----

- Soit une contrainte τ agissant sur un matériau élastique et provoquant une déformation ϵ .
- Suite à cette contrainte, le matériau est hors d'équilibre.
- Si *τ* est appliquée dans le plan ⊥ à *x*, les forces par unité de volume selon *x*, *y* et *z* s'écrivent comme

$$\frac{\partial \tau_{xx}}{\partial x}$$
, $\frac{\partial \tau_{yx}}{\partial y}$, $\frac{\partial \tau_{zx}}{\partial z}$,

- Voyons comment ces forces peuvent être reliées à une quantité mesurable.
- Définissons le vecteur de déplacement d'une particule (ou élément de volume) par

$$\mathbf{u} = u_x \hat{\mathbf{x}} + u_y \hat{\mathbf{y}} + u_z \hat{\mathbf{z}}.$$

r	E	ē.				0
٩.	5					

Modélisation en ondes complètes – Sismique

Généralités

Théorie

Méthode FDTD

DTD - Discrétisation

FDTD - Source

FDTD - March

temporelle

FDTD - Stabilit

=DTD - Dispersion

=DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

©L. Braille

Introduction

- Modélisation en ondes complètes – Sismique
- Généralités

Théorie

- Méthode FDTD
- FDTD Discrétisat
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

- **u** (ou sa dérivée dans le temps) est la quantité mesurée en sismique.
- La 2^e loi de Newton relie ^{∂²u}/_{∂t²} (l'accélération) à la force exercée

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \text{Forces agissant sur le volume selon } x$$
$$= \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z}$$
(1)

où ρ est la densité (constante) du matériau.

Introduction

Modélisation en ondes complètes – Sismique

Théorie

- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilit
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPM

Références

• Par ailleurs, les déformations *e* sont exprimées en termes des composantes de **u**, i.e.

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

- La loi de Hooke relie contraintes et déformations.
- La forme générale de la loi de Hooke s'écrit

$$\tau_{ij} = c_{ijpq} \epsilon_{pq},\tag{2}$$

où c_{ijpq} est un tenseur d'ordre 4, à 21 coefficients indépendants.

- Pour un milieu isotrope, on a $\tau_{ii} = \lambda \Delta + 2\mu \epsilon_{ii}$, et $\tau_{ij} = \mu \epsilon_{ij}$, $(i \neq j)$;
 - λ et μ sont les constantes de Lamé;
 - Δ est le coefficient de dilatation : $\Delta = \epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz} \equiv \nabla \cdot \mathbf{u}$.

Introduction

Modélisation en ondes complètes – Sismique

Généralités

Théorie

Méthode FDTD

- DTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- -DTD Stabilit
- FDTD Dispersion
- =DTD Cond. limites
- FDTD PML
- FDTD CPML

Références

On arrive ainsi a

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \lambda \frac{\partial \Delta}{\partial x} + 2\mu \frac{\partial \epsilon_{xx}}{\partial x} + \mu \frac{\partial \epsilon_{xy}}{\partial y} + \mu \frac{\partial \epsilon_{xz}}{\partial z}$$

$$= \lambda \frac{\partial \Delta}{\partial x} + \mu \left[2 \frac{\partial^2 u_x}{\partial x^2} + \left(\frac{\partial^2 u_y}{\partial x \partial y} + \frac{\partial^2 u_x}{\partial y^2} \right) + \left(\frac{\partial^2 u_z}{\partial x \partial z} + \frac{\partial^2 u_x}{\partial z^2} \right) \right]$$

$$= \lambda \frac{\partial \Delta}{\partial x} + \mu \nabla^2 u_x + \mu \frac{\partial}{\partial x} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} \right)$$

$$= (\lambda + \mu) \frac{\partial \Delta}{\partial x} + \mu \nabla^2 u_x. \qquad (3)$$

Introduction

Modélisation en ondes complètes – Sismique

Généralités

Théorie

- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- Comporelle
- EDTD Disporsion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• Selon les axes *y* et *z*, on obtient

$$o\frac{\partial^2 u_y}{\partial t^2} = (\lambda + \mu)\frac{\partial \Delta}{\partial y} + \mu \nabla^2 u_y \tag{4}$$

et

$$o\frac{\partial^2 u_z}{\partial t^2} = (\lambda + \mu)\frac{\partial \Delta}{\partial z} + \mu \nabla^2 u_z.$$
 (5)

• On peut exprimer les équations (3), (4) et (5) sous forme vectorielle comme

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + \mu) \nabla \Delta + \mu \nabla^2 \mathbf{u}$$
(6)

 Cette équation permet de décrire le mouvement des particules dans un milieu *élastique, homogène* et *isotrope*.

Introduction

Modélisation en ondes complètes – Sismique

Généralités

Théorie

- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML

Références

 Lorsque le module de cisaillement μ dans le matériau est nul, l'équation (6) se simplifie à

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \lambda \nabla \Delta = \lambda \nabla \nabla \cdot \mathbf{u}. \tag{7}$$

À partir de la définition du champ de pression p = -K∇ · u, où K = λ + ²/₃μ est le module d'élasticité, on arrive à l'équation *acoustique* pour un milieu *homogène* et *isotrope*

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla p \tag{8}$$

Introduction

- Modélisation en ondes complètes – Sismique
- Généralités
- Théorie

Méthode FDTD

- DTD Discrétisation
- DTD Source
- FDTD March
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- La méthode des différences finies dans le domaine du temps (*finite-difference time-domain* (FDTD) compte parmi les plus populaires en modélisation sismique.
- La méthode FDTD a été présentée par Yee en 1966 pour résoudre les équations de Maxwell,
- En sismique, la première mouture a été proposée pour le cas élastique 2D dans les années soixantes (Alterman et Karal, 1968),
- Plusieurs variantes et améliorations ont été développées par la suite (grille décalée (*staggered grid*), 3D, anisotropie, viscoélastique, DF d'ordre élevé, *perfectly matched layers* (PML), etc).

Introduction

- Modélisation en ondes complètes –
- Généralités
- Théorie

Méthode FDTD

- DTD Discrétisation
- DTD Source
- FDTD March
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPMI
- Références

- La méthode FDTD sera introduite dans ce cours à partir du cas élastique 2D.
- En 2D, on pose que les propriétés du milieux *ne varient pas* selon l'axe *y*;
- Si on s'intéresse aux ondes P et SV, il n'y a pas de mouvement des particules selon y, i.e. u_y = 0.
- La 2^{*e*} loi de Newton (éq. (1)) devient alors

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z}$$
(9)
$$\rho \frac{\partial^2 u_z}{\partial t^2} = \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z}$$
(10)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie

Méthode FDTD

- FDTD Discrétisatio
- FDTD Source
- FDTD March
- EDTD Stability
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

• La loi de Hooke (équation (2)) s'écrit par ailleurs

$$\tau_{xx} = (\lambda + 2\mu)\frac{\partial u_x}{\partial x} + \lambda\frac{\partial u_z}{\partial z}$$
(11)

$$\tau_{zz} = (\lambda + 2\mu) \frac{\partial u_z}{\partial z} + \lambda \frac{\partial u_x}{\partial x}$$
(12)
$$\tau_{xz} = \mu \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right).$$
(13)

Introduction

Modélisation en ondes complètes – Sismique

Généralités

Théorie

Méthode FDTD

DTD - Discrétisation

DTD - Source

FDTD - March

EDTD - Stabilite

FDTD - Dispersion

FDTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

- Virieux (dans ses papiers de 1984 et 1986) a proposé une approche basée sur les équations reliant contrainte (τ) et vitesse de déplacement des particules (v = ∂u/∂t).
- Les équations précédentes prennent alors la forme

(

$$\frac{\partial v_x}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} \right)$$
(14)

$$\frac{\partial v_z}{\partial t} = \frac{1}{\rho} \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z} \right)$$
(15)

$$\frac{\partial \tau_{xx}}{\partial t} = (\lambda + 2\mu) \frac{\partial v_x}{\partial x} + \lambda \frac{\partial v_z}{\partial z}$$
(16)
$$\frac{\partial \tau_{zz}}{\partial t} = (\lambda + 2\mu) \frac{\partial v_z}{\partial z} + \lambda \frac{\partial v_x}{\partial x}$$
(17)

$$\frac{\partial \tau_{xz}}{\partial t} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right). \tag{18}$$

Méthode FDTD – Discrétisation

Introduction

- Modélisation en ondes complètes –
- Sisinique
- Generalites
- Media de ED
- FDTD Discrétisation
- EDTD Source
- FDTD March
- temporelle
- DTD Stabilite
- FDTD Dispersion
- FDTD Cond. limite
- FDTD PML
- T D T D CP Mi

- Pour discrétiser les équations, Virieux a utilisé des différences finies centrées définies sur une grille décalée, dans l'espace et dans le temps
- Dans l'espace :

• L'indice *i* permet d'incrémenter selon *x*, et l'indice *j* selon *z*.

- Modélisation en ondes complètes –
- sisinique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML

- Sur la grille spatiale décalée, les différences finies centrées sont définies pour ½ pas.
- Par exemple, pour l'éq. (14), les dérivées partielles $\frac{\partial \tau_{xx}}{\partial x}$ et $\frac{\partial \tau_{xx}}{\partial z}$ sont évaluées à la position de v_x .

Méthode FDTD – Discrétisation

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- DTD Source
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Dans la littérature, on trouve parfois les termes *opérateur avant* et *opérateur arrière* pour désigner des opérateurs centrés sur grilles décalées; cela fait référence aux noeuds utilisés par rapport au noeud où est évalué la dérivée.
- Opérateur « arrière » :

• Opérateur « avant » :

Méthode FDTD – Discrétisation

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- Comporeile
- FDTD Stabilite
- -DTD Dispersion
- -DTD Cond. limite
- FDTD PML
- Références

- Dans le temps :
 - v_x et v_z sont mis à jour à $t + \frac{1}{2}\Delta t$ à partir de τ_{xx} , τ_{zz} et τ_{xz} définis à t, et de v_x et v_z définis à $t - \frac{1}{2}\Delta t$;
 - τ_{xx} , τ_{zz} et τ_{xz} sont mis à jour à $t + \Delta t$ à partir de v_x et v_z définis à $t + \frac{1}{2\Delta t}$, et de τ_{xx} , τ_{zz} et τ_{xz} définis à t.
- Il s'agit dans ce cas d'un schéma explicite (de type *leapfrog*) : la variables courante dépend des valeurs définies à un temps antérieur uniquement.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD

FDTD - Discrétisation

- =DTD Source
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- Pour un schéma implicite, les valeurs courantes dépendent des valeurs passées et futures, et leur traitement nécessite l'inversion de grosses matrices, ce qui s'avère très coûteux en calcul et en mémoire.
- L'avantage des schémas implicites est qu'ils sont inconditionnellement stables, contrairement aux schémas explicites (voir diapo 55).

- Modélisation en ondes complètes –
- sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Marche
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- DTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- En général en FDTD, le pas temporel Δt et les pas spatiaux Δx et Δz sont constants (et $\Delta z = \Delta x$).
- L'équation (14) sous forme discrète est ainsi

$$\frac{v_x^{m+1/2}(i,j) - v_x^{m-1/2}(i,j)}{\Delta t} = \frac{1}{\rho(i,j)} \left(\frac{\tau_{xx}^m(i+1/2,j) - \tau_{xx}^m(i-1/2,j)}{\Delta x} + \frac{\tau_{xz}^m(i,j+1/2) - \tau_{xz}^m(i,j-1/2)}{\Delta x} \right)$$
(19)

où *m* est utilisé comme indice temporel.

Modélisation en ondes complètes -

Cánáralitás

Théorie

Méthode FDTD

FDTD - Discrétisation

=DTD - Source

DTD - March

DTD - Dispersion

DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

• L'équation (19) peut être récrite

$$v_{x}^{m+1/2}(i,j) = v_{x}^{m-1/2}(i,j) + \frac{\Delta t}{\rho(i,j)\Delta x} \left[\left(\tau_{xx}^{m}(i+1/2,j) - \tau_{xx}^{m}(i-1/2,j) \right) + \left(\tau_{xz}^{m}(i,j+1/2) - \tau_{xz}^{m}(i,j-1/2) \right) \right], \quad (20)$$

qui est l'équation de mise à jour (*update equation*) de v_x .

• De façon similaire, on arrive l'équation de mise à jour de v_z qui est

$$v_z^{m+1/2}(i+1/2,j+1/2) = v_z^{m-1/2}(i+1/2,j+1/2) + \frac{\Delta t}{\rho(i+1/2,j+1/2)\Delta x} \left[\left(\tau_{xz}^m(i+1,j+1/2) - \tau_{xz}^m(i,j+1/2) \right) + \left(\tau_{zz}^m(i+1/2,j+1) - \tau_{zz}^m(i+1/2,j) \right) \right].$$
(21)

Méthode FDTD – Discrétisation

Introduction

Modélisation en ondes complètes –

or in the second

Théorie

Méthode EDTD

FDTD - Discrétisation

FDTD - Source

DTD - March

EDTD - Stability

DTD - Dispersion

DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

• Les équations de mise à jour des contraintes sont les suivantes :

$$\tau_{xx}^{m+1}(i+1/2,j) = \tau_{xx}^{m}(i+1/2,j) + \frac{(\lambda(i+1/2,j)+2\mu(i+1/2,j))\Delta t}{\Delta x} \left[v_{x}^{m+1/2}(i+1,j) - v_{x}^{m+1/2}(i,j)\right] + \frac{\lambda(i+1/2,j)\Delta t}{\Delta x} \left[v_{z}^{m+1/2}(i+1/2,j+1/2) - v_{z}^{m+1/2}(i+1/2,j-1/2)\right], \quad (22)$$

$$\tau_{zz}^{m+1}(i+1/2,j) = \tau_{zz}^{m}(i+1/2,j) + \frac{(\lambda(i+1/2,j)+2\mu(i+1/2,j))\Delta t}{\Delta x}$$

$$\left[v_{z}^{m+1/2}(i+1/2,j+1/2) - v_{z}^{m+1/2}(i+1/2,j-1/2)\right] + \frac{\lambda(i+1/2,j)\Delta t}{\Delta x} \left[v_{x}^{m+1/2}(i+1,j) - v_{x}^{m+1/2}(i,j)\right], \quad (23)$$

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD

FDTD - Discrétisation

- FDTD Sourc
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

• et finalement

$$\tau_{xz}^{m+1}(i,j+1/2) = \tau_{xz}^{m}(i,j+1/2) + \frac{\mu(i,j+1/2)\Delta t}{\Delta x} \left[\left(v_{x}^{m+1/2}(i,j+1) - v_{x}^{m+1/2}(i,j) \right) + \left(v_{z}^{m+1/2}(i+1/2,j+1/2) - v_{z}^{m+1/2}(i-1/2,j+1/2) \right) \right]$$
(24)

- Note : les termes impliquant ρ, λ, μ, Δx et Δt ne varient pas dans le temps;
 - ils peuvent être stockés à l'avance dans des variables de calcul.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD

FDTD - Discrétisation

- FDTD Source
- EDTD March temporelle
- -DTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- On remarque par ailleurs que pour utiliser les équations (20) à (24), les propriétés physiques du milieu doivent être définies en différents points :
 - $\rho \ge (i,j)$ et (i + 1/2, j + 1/2);
 - $\lambda à (i + 1/2, j);$
 - $\mu à (i + 1/2, j)$ et (i, j + 1/2).
- Une façon courante de procéder est de définir ρ, λ et μ aux noeuds (*i*, *j*) et d'interpoler les valeurs aux points requis.
 - Moczo et al. (2002) ont montré que
 - une moyenne arithmétique doit être utilisée pour ρ,
 - une moyenne harmonique doit être utilisée pour λ et μ .

Méthode FDTD – Discrétisation

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD March
- emporelle
- =DTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- Créez une classe GrilleFDTD en vous basant sur votre classe Grille
 - le constructeur aura pour arguments d'entrée les coordonnées des noeuds x et z
 - les attributs nx et nz sont le nombre de *noeuds* dans chaque dimension
- Ajoutez une méthode defProp ayant en entrée
 - Vp, Vs et rho : trois ndarray de taille nx × nz Important : l'indicage se fera selon [i,j]
 - dt
- La méthode defProp doit calculer :
 - b1 : $\frac{\Delta t}{\rho \Delta x}$ défini à (i, j)
 - b2 : $\frac{\Delta t}{\rho \Delta x}$ défini à (i + 1/2, j + 1/2)
 - $lm: \frac{(\lambda+2\mu)\Delta t}{\Delta x}$ défini à (i+1/2,j)
 - $1: \frac{\lambda \Delta t}{\Delta x}$ défini à (i + 1/2, j)
 - $\mathbf{m} : \frac{\mu \Delta t}{\Delta x}$ défini à (i, j + 1/2)

qui sont tous de taille nx×nz.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- temporelle
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- La fonction interpn du module scipy.interpolate vous sera utile pour interpoler les propriétés;
- Les arguments de cette fonction sont :
 - un tuple contenant les vecteurs des coordonnées des noeuds de la grille;
 - un ndarray 2D contenant les valeurs aux noeuds de la grille;
 - un ndarray de dimensions nx*nz × 2 contenant les coordonnées des points où interpoler.
- interpn retourne un *vecteur* contenant les valeurs interpolées, *dans l'ordre spécifié par le 3^e argument*.
 - Il faudra faire un reshape de ce vecteur pour le ramener à la dimension nz × nx
 - Attention : reshape incrémente *d'abord le dernier axe* (les colonnes en 2D).

Méthode FDTD – Discrétisation

ntroduction

Modélisation en ondes complètes – Sismique Generalités Théorie FDTD - Discrétisation FDTD - Discrétisation FDTD - Discrétisation FDTD - Suarche temporelle FDTD - Stabilité FDTD - Dispersion FDTD - Cond. limites FDTD - Cond. limites FDTD - CPML FDTD - CPML Références

• Testez votre code avec

```
x = np.arange(0.0, 200.1, 50.0)
z = np.arange(0.0, 150.1, 50.0)
g = GrilleFDTD(x, z)
Vp = 4000.0 + np.zeros((x.size, z.size))
Vp[1, 1] = 5000.0
Vp[2, 1] = 3000.0
sigma = 0.25
                           # coeff Poisson
Vs = Vp * np.sqrt((0.5-sigma)/(1.0-sigma))
rho = 2670.0 + np.zeros(Vp.shape)
rho[1, 1] = 2500.0
rho[2, 2] = 2700.0
dt = 0.007
```

```
g.defProp(Vp, Vs, rho, dt)
```

• Vous devriez obtenir les résultats de la diapo suivante.

Méthode FDTD – Discrétisation

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche
- EDTD Stabilitá
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Une source explosive peut être simulée en imposant des contraintes τ_{xx} et τ_{zz} égales en un point de l'espace;
 - La discrétisation adoptée permet de simuler facilement ce type de source car τ_{xx} et τ_{zz} sont effectivement définies aux mêmes noeuds;
 - Concrètement, la source est appliquée en *additionnant* le terme source aux variables τ_{xx} et τ_{zz}, à chaque itération, au noeud approprié;
- Différentes fonctions temporelles peuvent être adoptées pour simuler la signature de la source :
 - impulsion gaussienne : $f(t) = \exp(-\alpha(t-t_0)^2);$
 - dérivée d'impulsion gaussienne :
 - $g(t) = -2\alpha(t t_0) \exp(-\alpha(t t_0)^2);$
 - ondelette de Ricker : $r(t) = (1 2\pi^2 f_{dom}^2 t^2) \exp\left(-\pi^2 f_{dom}^2 t^2\right)$

Méthode FDTD – Source

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche
- EDTD Stabilité
- EDTD Cond limite
- FDTD PML
- FDTD CPML
- Références

Méthode FDTD – Source

Introduction

- Modélisation en ondes complètes –
- sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

• Une façon alternative de définir la source est d'appliquer une force externe $\mathbf{f}_{\text{ext}} = [f_x f_z]$, i.e.

$$\rho \frac{\partial v_x}{\partial t} = \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} + f_x$$
(25)
$$\rho \frac{\partial v_z}{\partial t} = \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zz}}{\partial z} + f_z$$
(26)

- En combinant différentes composantes de f en différents points, on peut créer des diagrammes de rayonnement particuliers permettant de représenter des mécanismes au foyer particuliers .
 - En sismologie, on peut procéder par inversion pour déterminer les composantes correspondant à un mécanisme donné.
- En sismique réflexion, il est plus courant de simplement utiliser une source ponctuelle.

Méthode FDTD – Source

```
Définissez d'abord une classe mère pour les fonctions sources
               class Source:
                   .....
                   Classe mère pour les fonctions sources
                   .....
                   def init (self, i, j, A):
EDTD - Source
                        ......
                       Paramètres
                        i: indice du noeud en x où est appliquée la source
                        j: indice du noeud en z où est appliquée la source
EDTD - PMI
                        A: amplitude de la source
                        ......
                        self.i = i
                        self.j = j
                        self.A = A
                   def __call__(self, ind):
                        ......
                        Valeur de la fct source à l'indice temporel ind
                        .....
                        if ind < self.f.size:</pre>
                            return self.A * self.f[ind]
                        else:
                            return 0.0
```


Méthode FDTD – Source

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche
- -DTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPM
- Références

• La source impulsionnelle est dérivée de Source

```
class Impulsion(Source):
    def __init__(self, i, j, alpha, t0, dt, A=1.0):
        Source.__init__(self, i, j, A)
        t = np.arange(0.0, 2.0*t0 + dt/3, dt)
        self.f = np.exp(-alpha * (t-t0)**2 )
```

• La méthode __call__ de la classe mère permet d'utiliser la source ainsi :

```
src = Impulsion(200, 150, 200.0, 0.2, dt)
```

```
for m in range(nstep):
    # applique la source au noeud (i+1/2,j)
    tau_zz[src.i, src.j] += src(m)
    tau_xx[src.i, src.j] += src(m)
```


- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche temporelle
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- Pour la dimension temporelle, on pose que le milieu est à l'équilibre à t = 0⁻, i.e. les contraintes τ_{xx}, τ_{zz} et τ_{xz} ainsi que les vitesses v_x et v_z sont nulles sur tout le domaine pour t < 0.
- La marche temporelle (*time stepping*) est une boucle s'amorçant à *m*=0 et qui comporte les étapes suivantes :
 - la source est appliquée sur les contraintes;
 - $m + \frac{1}{2}$: les vitesses sont mises à jour (eqns (20) et (21));
 - m + 1: les contraintes sont mises à jour (eqns (22), (23) et (24));
 - m = m + 1 et retour au début de la boucle.

- Modélisation en ondes complètes –
- Cán ánallada
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source

FDTD - Marche temporelle

- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- Ajoutez une méthode propage à votre classe GrilleFDTD pour propager les champs dans le temps, pour une source explosive;
- Cette méthode consiste en une boucle principale à l'intérieure de laquelle la source est appliquée et les équations (20) à (24) sont implémentées;
- Cette méthode aura en entrée
 - src : l'instance de la source utilisée;
 - t : la durée de la propagation;
 - showPlot : un booléen indiquant s'il faut afficher les champs v_x et v_z .
- Pour l'instant, ignorez les conditions aux limites.

Introduction

Modélisation en ondes complètes –

Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - Marche temporelle

FDTD - Stabilité

FDTD - Dispersion

FDTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

$$v_x^{m+1/2}(i,j) = v_x^{m-1/2}(i,j) + \frac{\Delta t}{\rho(i,j)\Delta x} \left[\left(\tau_{xx}^m(i+1/2,j) - \tau_{xx}^m(i-1/2,j) \right) + \left(\tau_{xx}^m(i,j+1/2) - \tau_{xx}^m(i,j-1/2) \right) \right]$$

Introduction

Modélisation en ondes complètes –

Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - Marche temporelle

FDTD - Stabilit

FDTD - Dispersion

DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

FDTD - Marche temporelle

z

$$\begin{aligned} \tau_{xx}^{m+1}(i+1/2,j) &= \tau_{xx}^{m}(i+1/2,j) + \frac{(\lambda+2\mu)\Delta t}{\Delta x} \left[v_x^{m+1/2}(i+1,j) - v_x^{m+1/2}(i,j) \right] + \\ &\frac{\lambda\Delta t}{\Delta x} \left[v_z^{m+1/2}(i+1/2,j+1/2) - v_z^{m+1/2}(i+1/2,j-1/2) \right] \end{aligned}$$

Modélisation en ondes complètes -

Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - Marche temporelle

-DTD - Stabilité

DTD - Dispersion

=DTD - Cond. limites

DTD - PML

FDTD - CPML

Références

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source

FDTD - Marche temporelle

- FDTD Stabilité
- FDTD Dispersion
- DTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

• Gérez l'affichage de v_x et v_z ainsi :

• Avant la boucle de la marche temporelle :

```
if showPlot:
    fig, (ax1, ax2) = plt.subplots(ncols=2)
    im1 = ax1.imshow(v_x.T)
    im2 = ax2.imshow(v_z.T)
    plt.show(block=False)
```

• Dans la boucle :

```
if showPlot and np.remainder(m, 20) == 0:
    im1.set_data(v_x.T)
    im1.set_clim(v_x.min(), v_x.max())
    im2.set_data(v_z.T)
    im2.set_clim(v_z.min(), v_z.max())
    fig.canvas.draw()
    plt.pause(0.01)
```

- Testez votre méthode avec les valeurs des diapos précédentes
- Répétez avec dt = 0.0072

- Modélisation en ondes complètes –
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March temporelle

FDTD - Stabilité

- DTD Dispersion DTD - Cond. limites
- FDTD PML

Références

- L'analyse de von Neumann permet d'étudier la stabilité de systèmes d'équations aux dérivées partielles solutionnés par différences finies.
- Cette analyse est basée sur la décomposition de l'erreur numérique en série de Fourier;
 - Un schéma de différences finies sera stable si les erreurs commises à un pas de temps ne font pas augmenter le cumul des erreurs au fil des itérations.
- Pour illustrer cette analyse, nous allons nous limiter à l'équation d'onde en 1D pour alléger la notation.
 - Pour un milieu où la vitesse de propagation *V* est constante, nous avons ainsi l'équation hyperbolique

$$\frac{\partial^2 u}{\partial t^2} = V^2 \frac{\partial^2 u}{\partial x^2}.$$
(27)

Méthode FDTD – Stabilité

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche temporelle

FDTD - Stabilité

=DTD - Dispersion =DTD - Cond. limites =DTD - PML

où

FDTD - CPML

Références

• L'équation (27) peut être récrite en un système de deux équations du 1^e ordre :

 $\frac{\partial r}{\partial t} = V \frac{\partial s}{\partial x}$ (28) $\frac{\partial s}{\partial t} = V \frac{\partial r}{\partial x}$ (29)

$$r \equiv V \frac{\partial u}{\partial x}$$
(30)
$$s \equiv \frac{\partial u}{\partial t}.$$
(31)

(Notez la similarité avec le passage de l'équation (6) au formalisme contrainte-vitesse)

- Modélisation en ondes complètes – Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March temporelle

FDTD - Stabilité

- DTD Dispersion
- FDTD PML
- FDTD CPM

Références

• On reviendra au système (28) et (29), considérons d'abord la forme la plus simple

$$\frac{\partial u}{\partial t} = -V \frac{\partial u}{\partial x}.$$
(32)

- Cette équation peut être discrétisée avec différents opérateurs : avant, arrière, centré, d'ordre supérieur...
- Testons le cas d'une grille régulière où un opérateur avant est utilisé selon *t* et un opérateur centré selon *x*, ce qui donne

$$\frac{u_i^{m+1} - u_i^m}{\Delta t} = -V\left(\frac{u_{i+1}^m - u_{i-1}^m}{2\Delta x}\right),$$
 (33)

qui est un schéma explicite appelé FTCS (*forward time centered space*).

Méthode FDTD – Stabilité

Introduction

Modélisation en ondes complètes –

Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

DTD - March emporelle

FDTD - Stabilité

DTD - Dispersion

DTD - Cond. limite:

DTD - PML

FDTD - CPML

Références

- Posons pour point de départ de l'analyse de von Neumann que le domaine spatial est de longueur *L* et que *u* est nul aux extrémités.
- Une solution du type série de Fourier s'applique

$$u(x,t) = \sum_{l=1}^{\infty} A_l e^{-(l\pi/L)^2 t} \sin\left(\frac{l\pi x}{L}\right).$$
 (34)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March temporelle

FDTD - Stabilité

FDTD - Dispersion FDTD - Cond. limites FDTD - PML

Pófóroncos

- Pour un domaine [0, L], la représentation de Fourier prolonge la fonction par antisymétrie sur [-L, 0], ce qui admet une longueur d'onde maximale $\lambda_{max} = 2L$.
- Par définition, le nombre d'onde *k* vaut

$$k = \frac{2\pi}{\lambda} \tag{35}$$

ce qui fait que $k_{\min} = \pi/L$.

Modélisation en ondes complètes –

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

EDTD - March emporelle

FDTD - Stabilité

DTD - Dispersion

DTD - Cond. limite

- FDTD PML
- FDTD CPML

Références

- De plus, Nyquist nous dit que la plus petite longueur d'onde représentable est $\lambda_{\min} = 2\Delta x$, ce qui fait que $k_{\max} = \pi/\Delta x$.
- Pour une grille comportant *N* intervalles ($N = L/\Delta x$), les harmoniques représentables sont ainsi

$$k_l = l \frac{\pi}{N\Delta x} \qquad l = 1, 2, \dots, N \tag{36}$$

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March temporelle

FDTD - Stabilité

- DTD Dispersion
- DTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• En introduisant (36) dans (34), la solution à t = 0 est

$$u(x,0) = \sum_{l=1}^{N} A_l \sin(k_l x) \equiv \sum_{l=-N}^{N} c_l^0 e^{\iota(k_l x)}$$
(37)

avec ι = √-1 et c_l⁰ l'amplitude de chaque harmonique.
La solution discrète, évaluée à x_i = i∆x, est alors

$$u_{i}^{0} = \sum_{l=-N}^{N} c_{l}^{0} e^{\iota(k_{l} i \Delta x)}$$
(38)

Modélisation en ondes complètes –

allique

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

DTD - March emporelle

FDTD - Stabilité

DTD - Dispersion

FDTD - PML

FDTD - CPML

Références

- L'idée de l'analyse est d'examiner si les amplitudes des harmoniques sont amplifiées *dans le temps*.
- Puisque le problème est linéaire, on peut considérer les harmoniques indépendamment.
- Désignons ξ , un coefficient d'amplification de l'harmonique entre t et $t + \Delta t$, tel que

$$c^{1} = \xi c^{0}$$

$$c^{2} = \xi c^{1} = \xi (\xi c^{0}) = \xi^{2} c^{0}$$

$$\vdots$$

$$c^{m} = \xi^{m} c^{0}.$$

où l'indice *m* affecté à *c* indique la m^e itération, alors que l'indice *m* affecté à ξ est la puissance de ξ .

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche temporelle

FDTD - Stabilité

- DTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• Avec cette définition, les solutions de l'équation discrétisée sont donc de la forme

$$u_i^m = \xi^m e^{\iota k i \Delta x} \tag{39}$$

où $\xi = \xi(k)$ apparaît comme une grandeur complexe fonction de *k*.

- L'élément clé de l'analyse est que la dépendance temporelle de (39) est définie par l'exposant de *ξ*;
 - à chaque pas temporel, l'exposant *m* est incrémenté de 1;
 - si |ξ(k)| > 1 (pour une ou quelques harmoniques) le système est instable car la solution augmente de façon exponentielle.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- DTD Marche emporelle

FDTD - Stabilité

- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML

Références

• Évaluons $\xi(k)$ pour l'équation (33) en y insérant (39) :

$$\frac{\xi^{m+1}e^{\imath k i\Delta x} - \xi^m e^{\imath k i\Delta x}}{\Delta t} = -V\left(\frac{\xi^m e^{\imath k (i+1)\Delta x} - \xi^m e^{\imath k (i-1)\Delta x}}{2\Delta x}\right)$$
(40)

• En divisant par ξ^m et en utilisant l'identité $\sin \theta = \frac{e^{\iota\theta} - e^{-\iota\theta}}{2\iota}$, on arrive à

$$f_{2}^{\alpha}(k) = 1 - \iota \frac{V\Delta t}{\Delta x} \sin k\Delta x.$$
 (41)

- On remarque que le module de (41) est >1 *pour toutes les valeurs de k*;
 - le schéma FTCS est inconditionnellement instable !
- Qu'en est-il pour un schéma de type *leapfrog*?

Modélisation en ondes complètes –

Sismique

Généralités

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - March temporelle

FDTD - Stabilité

DTD - Dispersion

DTD - Cond. limites

FDTD - PML

FDTD - CPML

Références

• Sur une grille décalée, les équations (28) et (29) discrétisées selon un schéma *leapfrog* nous donne

$$\frac{r_{i+1/2}^{m+1} - r_{i+1/2}^m}{\Delta t} = V \frac{s_{i+1}^{m+1/2} - s_i^{m+1/2}}{\Delta x}$$
(42)
$$\frac{s_i^{m+1/2} - s_i^{m-1/2}}{\Delta t} = V \frac{r_{i+1/2}^m - r_{i-1/2}^m}{\Delta x}$$
(43)

• Dans ce cas, les solutions sont de la forme

$$\begin{bmatrix} r_i^{m+1}\\ s_i^{m+1} \end{bmatrix} = \xi^m e^{\imath k i \Delta x} \begin{bmatrix} r^0\\ s^0 \end{bmatrix}$$
(44)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche temporelle

FDTD - Stabilité

- DTD Dispersion DTD - Cond. limites
- EDTD CPMI

Références

• En insérant une solution du type (44) dans les équations (42) et (43), on peut construire un système

$$\underbrace{\begin{bmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} r^0 \\ s^0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(45)

où

• $A = -\frac{\cos\left(\frac{k\Delta x}{2}\right)}{\sqrt{\xi}} + \sqrt{\xi}\cos\left(\frac{k\Delta x}{2}\right) - \frac{\iota\sin\left(\frac{k\Delta x}{2}\right)}{\sqrt{\xi}} + \iota\sqrt{\xi}\sin\left(\frac{k\Delta x}{2}\right)$ • $B = p - p\cos(k\Delta x) - \iota p\sin(k\Delta x)$ • $C = -2\iota p\sin\left(\frac{k\Delta x}{2}\right)$ • $D = -\frac{1}{\sqrt{\xi}} + \sqrt{\xi}$ et $p = \frac{V\Delta t}{\Delta x}$.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- DTD March emporelle

FDTD - Stabilité

- DTD Dispersion
- DTD Cond. limites
- FDTD PML

Références

- Le système (45) admet une solution seulement si le déterminant de la matrice **A** est nul;
- Cette condition nous permet de trouver deux racines pour ξ, soit

$$\xi = 1 - p^2 + p^2 \cos(k\Delta x) \pm \sqrt{p^2 (\cos(k\Delta x) - 1)(2 - p^2 + p^2 \cos(k\Delta x)))}$$
(46)

 Le système sera stable si |ξ| ≤ 1, ce qui s'avère être le cas lorsque p ≤ 1 ou, autrement écrit, lorsque

$$\frac{V\Delta t}{\Delta x} \le 1 \tag{47}$$

qui est connue sous le nom de condition de Courant-Friedrichs-Lewy, ou simplement *condition de Courant*.

Méthode FDTD – Stabilité

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March temporelle

FDTD - Stabilité

- FDTD Dispersion
- DTD Cond. limites
- FDTD PML
- FDTD CPML

Références

Vérifiez que les racines (46) nous assurent la stabilité en tracant |ζ| pour 0 ≤ k∆x ≤ π avec des valeurs de *p* égales à p=[0.75, 0.85, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05]

Méthode FDTD – Stabilité

Introduction

- Modélisation en ondes complètes –
- Charles
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD Marche temporelle

FDTD - Stabilité

- DTD Dispersion DTD - Cond. limites DTD - PML
- FDTD CPML

Références

• Pour le cas élastique 2D *discrétisé avec des opérateurs d'ordre* 2, on peut montrer que les conditions découlant des racines du déterminant sont

$$\sqrt{2}V_P \frac{\Delta t}{\Delta x} \le 1$$
(48)
$$\sqrt{2}V_S \frac{\Delta t}{\Delta x} \le 1$$
(49)

où V_P et V_S sont les vitesses des ondes P et S.

• La condition définie par V_P est plus restrictive puisque $V_P > V_S$; c'est celle qui est utilisée pour s'assurer que le pas temporel est adéquat, i.e. que

$$\Delta t \le \frac{\Delta x}{\sqrt{2}V_P} \tag{50}$$

• Cette expression varie selon l'ordre des opérateurs de différences finies.

- Modélisation en ondes complètes –
- Cánáralitás
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March temporelle
- FDTD Stabilité
- DTD Dispersion
- =DTD Cond. limite
- FDTD PML
- Références

• Si Δx vaut 50 m, quel est le critère de stabilité lorsque

- $V_P = 4000 \text{ m/s}$?
- $V_P = 5000 \text{ m/s}?$

Méthode FDTD – Dispersion numérique

Introduction

Modélisation en ondes complètes – Sismique

- Généralités
- Théorie
- Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - March

. FDTD - Stabilité

FDTD - Dispersion

FDTD - Cond. limites FDTD - PML

EDTD - CPMI

Références

- Avec l'analyse de stabilité, nous avons examiné comment se comporte *l'amplitude* des harmoniques.
- Or, le coefficient d'amplification ζ est une grandeur complexe qui peut être exprimée selon

$$\xi = |\xi| e^{\iota \Phi}, \tag{51}$$

où Φ est l'angle de déphasage (fonction de k).

- Lorsque Φ diffère de l'angle de déphasage de la solution exacte (Φ_e), la solution numérique est en avance (+ rapide) ou en retard (+ lente) par rapport à la solution exacte;
 - il se produit alors un phénomène de dispersion numérique.
- L'erreur de déphasage est définie $\Phi \Phi_e$.
- Cependant, on utilise généralement la vitesse de phase discrète normalisée par la vitesse de phase exacte pour quantifier la dispersion.

Méthode FDTD – Dispersion numérique

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- DTD Cond. limite
- FDTD PML
- FDTD CPML
- Références

• Tracez l'erreur de déphasage de la racine (46) positive pour $0 \le k\Delta x \le \pi$ avec des valeurs de *p* égales à p=[0.75, 0.85, 0.9, 0.95, 0.99, 1.0, 1.01, 1.05]

Introduction

Modélisation en ondes complètes –

- sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilité

FDTD - Dispersion

- DTD Cond. limite:
- FDTD PML
- FDTD CPML

Références

- On remarque que plus le produit $k\Delta x$ est faible, plus l'erreur est faible.
 - Peut-on trouver un critère nous donnant une dispersion « acceptable » ?
- Soit *G* le nombre de noeuds de la grille par longueur d'onde, i.e. $G = \lambda / \Delta x$.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limite
- PDTD PML
- Références

• L'inverse de *G* nous permet d'exprimer le nombre d'onde en terme d'unités de pas spatial Δx

$$K = \frac{1}{G} = \frac{\Delta x}{\lambda} = \frac{k\Delta x}{2\pi}$$
(52)

- Sachant que $k_{\text{max}} = \pi/\Delta x$, on a que $K_{\text{max}} = 1/2$.
- En examinant la dispersion en fonction de K plutôt que kΔx, on peut arriver à définir un critère en terme de nombre de noeuds par longueur d'onde.

Introduction

- Modélisation en
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- DTD Cond. limite
- FDTD PML
- FDTD CPML

Références

• Pour le cas élastique 2D étudié dans ce cours avec

- V'_P et V'_S les vitesses de phase numériques;
- *V_P* et *V_S* les vitesses de phase exactes, les vitesses de phase normalisées sont (Moczo *et al.*, 2000)

$$\frac{V'_P}{V_P} = q \frac{\sqrt{2}}{\pi} \frac{r}{pK} \sin^{-1} \left(\frac{1}{q\sqrt{2}} pF_{V_P} \right)$$
(53)
$$\frac{V'_S}{V_S} = q \frac{\sqrt{2}}{\pi} \frac{r}{pK} \sin^{-1} \left(\frac{1}{q\sqrt{2}} \frac{p}{r} F_{V_S} \right)$$
(54)

où

F

$$F_{\eta} = \left\{ \left[a \sin \left(3\pi\zeta \sin \theta \right) + b \sin \left(\pi\zeta \sin \theta \right) \right]^{2} + \left[a \sin \left(3\pi\zeta \cos \theta \right) + b \sin \left(\pi\zeta \cos \theta \right) \right]^{2} \right\}^{1/2}$$
(55)

et où

$$\zeta = \frac{K}{r}$$
 si $\eta = V_P$ ou $\zeta = K$ si $\eta = V_S$.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- . FDTD - Stabilité
- FDTD Dispersion
- FDTD Cond. limites FDTD - PML
- FDTD CPML
- Références

- *q*, *a* et *b* sont des constantes qui dépendent de l'ordre de l'opérateur de dérivée spatiale;
 - Pour un opérateur d'ordre 2, q = 1, a = 0 et b = 1.
- $K = \Delta x / \lambda_S;$
- $p = q\sqrt{2}V_P \frac{\Delta t}{\Delta x}$;
- $r = V_P/V_S;$
- θ est l'angle de *k* par rapport à l'axe des *x*.

- Modélisation en
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limite
- FDTD PML
- FDTD CPML
- Références

Introduction

- Modélisation en
- Sismiaue
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilité

FDTD - Dispersion

- FDTD Cond. limite
- FDTD PML
- FDTD CPML

Références

- Modélisation en
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limite
- FDTD PML
- FDTD CPML
- Références

Introduction

- Modélisation en ondes complètes –
- Cánáralitás
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilité

FDTD - Dispersion

- FDTD Cond. limites
- FDTD PML
- Références

- Important : ces courbes sont valides pour un schéma O(2,2) (opérateurs d'ordre 2 en temps et dans l'espace);
- La dispersion varie en fonction de l'angle de propagation : une anisotropie est générée par la dispersion numérique ;
- Une règle empirique communément admise est de s'assurer que K_{max} ≤ 0.1, i.e. qu'on a *au moins 10 noeuds par longueur d'onde minimale*, ou

$$\Delta x \le \lambda_{\min} / 10 \tag{56}$$

- On va souvent se donner un facteur de sécurité et utiliser 15 ou 20 noeuds par longueur d'onde.
- On remarque que les ondes S sont plus affectées par la dispersion numérique;
 - il faut donc calculer λ_{\min} à partir de V_S .
- La dispersion numérique augmente en fonction du coefficient de Poisson.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- . FDTD - Stabilité
- FDTD Dispersion
- FDTD Cond. limite FDTD - PML
- FDTD CPML
- Références

- L'utilisation d'opérateurs d'ordres supérieurs à 2 permet de relaxer la règle, ce qui permet d'utiliser un pas Δx plus grand;
- En utilisant un pas Δx plus grand, le temps de calcul est réduit :
 - pour le calcul des dérivées spatiales car le domaine comporte moins de noeuds (même si l'opérateur en soi est plus coûteux);
 - le pas ∆t peut être plus grand et on réduit le nombre d'itérations pour une fenêtre de temps donnée.

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limit
- FDTD PML
- i bi bi ci inc
- Références

Longueur d'onde en f
ct de V et f

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- . FDTD - Stabilité
- FDTD Dispersion
- DTD Cond. limite
- FDTD PML
- Références

- Modéliser la propagation dans un milieu où V_P vaut 4000 m/s, σ = 0.25 et ρ = 2670 kg/m³, pour dx=25, dx=50, dx=80 et dx=160
- Pour chaque cas,
 - Utilisez dt = 0.99*dx/(4000*sqrt(2))
 - Construisez la grille avec
 - x = dx * np.arange(300)
 - z = dx * np.arange(300)
 - Source : utilisez une ondelette de Ricker (diapo 35) avec fdom=5 et placez la source au centre du domaine;
- Utilisez des temps de propagation respectifs de 1.1, 2.1, 3.2 et 6.4 s.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion

FDTD - Cond. limites

- DTD PML
- FDTD CPML

Références

- Dans le domaine spatial, le choix des conditions aux limites dépendent du problème considéré :
 - contraintes nulles, correspondant à une surface libre (conditions de Neumann);
 - déplacements nuls, correspondant à une surface rigide (conditions de Dirichlet);
 - frontière absorbante simulant un domaine infini, basée sur une approximation paraxiale de l'équation d'onde;
 - domaine absorbant simulant un domaine infini, souvent implémenté avec les PML (*perfectly matched layers*).

Modélisation en ondes complètes -
Sismique
Généralités
Théorie
Méthode FDTD
FDTD - Discrétisation
FDTD - Source
FDTD - Marche temporelle
FDTD - Stabilité
FDTD - Dispersion
FDTD - Cond. limites

FDTD - PML

Références

- L'implémentation d'une surface libre avec la méthode FDTD occasionne des difficultés en raison de la nature non-locale des opérateurs de différence finie.
 - Il est en effet requis de connaître v_x et v_z à j=-½ (donc au dessus de la surface) pour calculer τ_{xx} et τ_{xz}, et τ_{xz} à la même position pour calculer v_x.
- Différentes méthodes ont été proposées pour résoudre le problème.
- Une façon simple est de poser que les constantes d'élasticité sont nulles au dessus de la surface et que la densité est très faible (*vacuum formulation*).
 - Cette approche est souvent instable, et requiert un pas Δx très fin (jusqu'à 60 noeuds par longueur d'onde) lorsque la surface n'est pas plane.

Modélisation en ondes complètes – Sismique

- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Une autre méthode est basée sur l'image des contraintes.
- Dans le cas d'une surface libre, les composantes du tenseur de contrainte τ normales à la surface libre z₀ sont nulles, i.e.

$$\boldsymbol{\tau} \cdot \mathbf{n}|_{z=z_0} = 0. \tag{57}$$

• Pour le cas 2D précédent, cela signifie que

$$\tau_{zz}|_{z=z_0} = 0$$
(58)
$$\tau_{yz}|_{z=z_0} = 0$$
(59)

• L'équation (58) peut être implémentée directement, alors que pour (59), la condition d'image des contraintes signifie que

$$\tau_{xz}(i,j+1/2) = -\tau_{xz}(i,j-1/2).$$
(60)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Les conditions (58) et (60) permettent d'évaluer explicitement v_x et v_z au dessus de la surface libre (à z < z₀).
- Robertsson (1996) a proposé une approche plus pragmatique qui s'avère flexible et relativement précise : poser que v_x et v_z sont nuls pour z < z₀ et utiliser (58) et (60) avec les équations de mise à jour.
 - Cette méthode est également facile à implémenter avec le schéma *O*(2, 4).

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March temporelle
- -DTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

- Plusieurs modèles de frontière absorbante basés sur l'approximation paraxiale de l'équation d'onde ont été proposés au fil du temps;
- On doit à Clayton et Engquist (1977) la première formulation pour le cas élastique;
- Considérons d'abord le cas acoustique 2D, pour lequel la relation de dispersion suivante s'applique :

$$\omega = V \sqrt{k_x^2 + k_z^2}.$$
 (61)

• Si on considère la propagation selon *z*, la relation devient

$$k_z = \pm (\omega/V) \sqrt{1 - (V^2 k_x^2 / \omega^2)},$$
 (62)

où le signe \pm indique les directions opposées de propagation (le choix du signe dépend de la frontière considérée, de façon à empêcher le retour de l'onde dans le milieu).

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- DTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Lorsque |Vk_x/ω| > 1, il y a présence d'ondes evanescentes (k_z est complexe) et il y a instabilité.
- L'approximation paraxiale consiste à trouver une solution qui élimine les ondes evanescentes, en restreignant la propagation à l'intérieur d'un « cône » centré sur *z*.
- Cela est possible en développant la racine carrée de (62) en une approximation en nombres rationnels pour Vk_x/ω ≪ 1.
- Pour la direction positive, les trois approximations suivantes sont possibles :

$$A1: Vk_z/\omega = 1 + O\left(|Vk_x/\omega|^2\right)$$
(63)

A2:
$$Vk_z/\omega = 1 - \frac{1}{2} (Vk_x/\omega)^2 + O(|Vk_x/\omega|^4)$$
 (64)

A3:
$$Vk_z/\omega = \frac{1 - \frac{3}{4} (Vk_x/\omega)^2}{1 - \frac{1}{4} (Vk_x/\omega)^2} + O(|Vk_x/\omega|^6)$$
 (65)

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• En exprimant les expressions précédentes sous forme différentielle, on trouve

$$A1: \frac{\partial p}{\partial z} + \frac{1}{V}\frac{\partial p}{\partial t} = 0$$
(66)

$$A2: \frac{\partial^2 p}{\partial z \partial t} + \frac{1}{V} \frac{\partial^2 p}{\partial t^2} - \frac{V}{2} \frac{\partial^2 p}{\partial x^2} = 0$$

$$A3: \frac{\partial^3 p}{\partial z \partial t \partial t} - \frac{V^2}{4} \frac{\partial^3 p}{\partial z \partial x \partial x} + \frac{1}{V} \frac{\partial^3 p}{\partial t^3} - \frac{3V}{4} \frac{\partial^3 p}{\partial t \partial x \partial x} = 0$$
(67)
(67)

- Ces expressions expriment la propagation dans une seule direction selon *z*;
- En utilisant une de ces expressions à la frontière du domaine, on « empêche » l'onde incidente à la frontière de retourner dans le domaine;
- Note : plus l'angle d'incidence augmente, moins bonne est l'absorption.

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• Dans le cas élastique 2D, les conditions de type A1 s'écrivent, pour la direction *z*,

$$\frac{\partial v_x}{\partial z} + \frac{1}{V_S} \frac{\partial v_x}{\partial t} = 0,$$
(69)
$$\frac{\partial v_z}{\partial z} + \frac{1}{V_P} \frac{\partial v_z}{\partial t} = 0.$$
(70)

• Sous forme discrète, nous avons

7

$$\frac{v_x^{m^{-1/2}}(i,j) - v_x^{m^{-1/2}}(i,j-1)}{\Delta z} + \frac{v_x^{m^{+1/2}}(i,j) - v_x^{m^{-1/2}}(i,j)}{V_S(i,j)\Delta t} = 0, \quad (71)$$

$$\frac{\frac{w^{m-1/2}(i+1/2,j+1/2) - v_z^{m-1/2}(i+1/2,j-1/2)}{\Delta z} + \frac{v_z^{m+1/2}(i+1/2,j+1/2) - v_z^{m-1/2}(i+1/2,j+1/2)}{V_P(i+1/2,j+1/2)\Delta t} = 0.$$
 (72)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

- Les conditions de type A1 de Clayton et Engquist (1977) sont très simples à implémenter;
 - seulement deux dérivées premières doivent être discrétisées pour v_x et v_z .
- Leur performance est par contre insatisfaisante dans la majorité des cas, et plusieurs conditions d'ordres supérieurs ont été proposées, notamment par Higdon (1991);
 - l'implémentation des conditions d'ordres supérieurs peut cependant s'avérer fastidieuse.

- Modélisation en ondes complètes -Sismique Généralités Théorie Méthode FDTD FDTD - Discrétisation FDTD - Source EDTD - Marcho
 - emporelle
 - -DTD Stabilité
 - FDTD Dispersion
 - DTD Cond. limites
- FDTD PML
- FDTD CPMI
- Références

- Les *Perfectly Matched Layers* (PML) ont été proposées par Bérenger (1994) pour la modélisation FDTD en électromagnétisme sur des domaines illimités.
- Les PML sont devenus depuis la méthode standard pour toute une panoplie d'applications (EM, simique, mécanique des fluides, etc)
- L'idée des PML est d'entourer le domaine de modélisation par un « matériau » absorbant qui ne produira pas de réflexion à l'interface avec le domaine.
- Cela se fait en couplant les équations valides pour le domaine de modélisation, avec des équations correspondantes pour les PML.

- Modélisation en
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- -DTD Stabilite
- =DTD Dispersion
- FDTD Cond. limite:
- FDTD PML
- FDTD CPML
- Références

1	1	•	1	•	•	•	•	•	•	•	•	•	1	1		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
-	•	•	÷	•	•	•	•	•	•		•	•	•	• •	•	
	PM	Domaine de ML modélisation											•	PML		
	•	•	÷	•	•	٠	•	•	•	•	•	•		•		
	•	•		•	•	•	•	•	•	•	•	•		•		
	•	•		•	•	•	•	•	•	•	•	•		•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	•	•		•	•	•	•	•	•	•	•	•		ė (
		1														
	Ĩ	Ĭ.	Ţ										Ţ	Ţ		
							F	ΡM	L							
	Ţ	Ţ.	Ţ										Ţ	Ţ		
	÷		- 🔶 -	0	0		@		0				. .			

Modélisation en ondes complètes –

Sistilique

Théorie

Méthode FDTD

FDTD - Discrétisation

FDTD - Source

FDTD - March

EDTD - Stabilité

FDTD - Dispersion

DTD - Cond. limites

FDTD - PML

PDTD - CPMI

Références

• Partons du cas générique 2D

$$\frac{\partial v}{\partial t} - A \frac{\partial v}{\partial x} - B \frac{\partial v}{\partial z} = 0.$$
(73)

- Bérenger a montré qu'on peut arriver au résultat voulu en décomposant v en deux parties telles que v = v^{||} + v[⊥], où
 - Il signifie qu'on garde seulement la dérivée parallèle à l'interface;
 - ⊥ signifie qu'on garde seulement la dérivée perpendiculaire à l'interface.
- On a alors

$$\frac{\partial v^{\parallel}}{\partial t} - B \frac{\partial v}{\partial z} = 0$$
(74)
$$\frac{\partial v^{\perp}}{\partial t} - A \frac{\partial v}{\partial x} = 0$$
(75)

Introduction

- Modélisation en ondes complètes –
- sismique
- Generalites
- Théorie
- Méthode FDTD
- FDTD Discrétisati
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPMI

Références

• Considérons une interface verticale entre le domaine de modélisation et les PML;

• Dans la région correspondant aux PML, on introduit un facteur d'amortissement $d_x(x)$ (réel et positif), tel que

$$\frac{\partial v^{\parallel}}{\partial t} - B \frac{\partial v}{\partial z} = 0 \tag{76}$$

$$\frac{\partial v^{\perp}}{\partial t} + d_x(x)v^{\perp} - A\frac{\partial v}{\partial x} = 0$$
(77)

où d_x vaut zéro à l'interface, et croît en s'éloignant vers l'extérieur des PML.

• *d_x* vaut zéro dans le domaine de modélisation.

Introduction

- Modélisation en ondes complètes -
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilite
- FDTD Dispersion
- =DTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• En comparant la solution harmonique de (73), i.e.

$$\mu\omega\hat{v} - A\frac{\partial\hat{v}}{\partial x} - B\frac{\partial\hat{v}}{\partial z} = 0$$
(78)

et la solution harmonique du système (76) et (77), i.e.

$$\iota\omega\hat{v}^{\parallel} - B\frac{\partial\hat{v}}{\partial z} = 0 \tag{79}$$

$$\iota\omega\hat{v}^{\perp} - \frac{\iota\omega}{\iota\omega + d_x} A \frac{\partial\hat{v}}{\partial x} = 0$$
(80)

on remarque que les PML impliquent la substitution

$$\frac{\partial}{\partial x} \to \frac{\partial}{\partial \tilde{x}} = \frac{\iota \omega}{\iota \omega + d_x} \frac{\partial}{\partial x} = \frac{1}{s_x} \frac{\partial}{\partial x}$$
(81)

où s_x est appelé le facteur d'étirement, i.e.

$$s_x = 1 + \frac{d_x}{\iota\omega}.$$
(82)

Modélisation en ondes complètes –

- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilité
- DTD Dispersion
- DTD Cond. limites
- FDTD PML
- FUTD CPML
- Références

- Pour les milieux continus, les PML n'occasionnent aucune réflexion à l'interface avec le domaine de modélisation;
- La situation est différente sur une grille numérique car le profile *d_x* n'est pas continu;
- L'expérience a montré que la technique des PML est supérieure aux autres approches et que les réflexions produites à l'interface peuvent être très faibles;
- Néanmoins, lorsqu'une onde atteint l'interface à incidence rasante, l'amplitude de la réflexion est plus élevée et peut devenir problématique;
- Une cause de cette dégradation est la nature non causale des PML telles que formulées selon le facteur d'étirement (82), i.e. $s_x \rightarrow -\iota \infty$ lorsque $\omega \rightarrow 0$.
 - Heureusement, une modification simple permet de corriger le problème, et mène aux *convolutional perfectly matched layers* (CPML).

Introduction

- Modélisation en ondes complètes –
- Gánáralitás
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle FDTD - Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- EDTD PML
- Références

• En définissant le facteur d'étirement tel que

$$s_x(x) = \nu_x(x) + \frac{d_x(x)}{\alpha_x(x) + \iota\omega},$$
(83)

avec $\alpha_x \ge 0$ and $\nu_x \ge 1$, le pôle de s_x qui dépend de la fréquence est déplacé de l'axe des réels vers le plan complexe supérieur, une approche nommée *complex frequency-shifted* (CFS) PML.

- ν_x permet d'atténuer les ondes evanescentes (Roden et Gedney, 2000).
- En transformant (83) vers le domaine du temps, on obtient la convolution

$$\frac{\partial}{\partial \tilde{x}} = \bar{s}_{\chi}(t) * \frac{\partial}{\partial x}, \tag{84}$$

où $\bar{s}_x(t)$ est la transformée de Fourier inverse de $1/s_x,$ où

$$\frac{1}{s_x} = \frac{1}{\nu_x} - \frac{d_x}{\nu_x^2} \frac{1}{(d_x/\nu_x + \alpha_x) + \iota\omega}.$$
(85)

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilit
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML

Références

• À partir de (85), on trouve

$$\bar{s}_{x}(t) = \frac{\delta(t)}{\nu_{x}} - \frac{d_{x}}{\nu_{x}^{2}} e^{-(d_{x}/\nu_{x} + \alpha_{x})t} H(t) \equiv \frac{\delta(t)}{\nu_{x}} + \zeta_{x}(t), \quad (86)$$

avec $\delta(t)$ le delta Dirac et H(t) la fonction Heaviside.

• La convolution devient

$$\frac{\partial}{\partial \tilde{x}} = \frac{1}{\nu_x} \frac{\partial}{\partial x} + \zeta_x(t) * \frac{\partial}{\partial x}.$$
(87)

- La difficulté avec cette expression est l'implémentation de la convolution;
 - La convolution numérique entre *x* et *h* est définie $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$, et implique le stockage en mémoire de

toutes les valeurs passées de *x* et *h*!

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML

Références

- Heureusement (bis), une solution élégante existe : les variables *mémoire* (Carcione *et al.*, 1988);
- Une variable mémoire permet de remplacer la convolution par une seule variable qui est mise à jour à chaque pas de temps, i.e.

$$\frac{\partial}{\partial \tilde{x}} = \frac{1}{\nu_x} \frac{\partial}{\partial x} + \zeta_x(t) * \frac{\partial}{\partial x} \equiv \frac{\partial}{\partial \tilde{x}} = \frac{1}{\nu_x} \frac{\partial}{\partial x} + \psi_x \qquad (88)$$

où ψ_x est mis à jour selon

$$\psi_x^m = b_x \psi_x^{m-1} + c_x \left(\frac{\partial}{\partial x}\right)^m, \tag{89}$$

avec, pour le cas des PML étudié ici,

$$b_x = e^{-(d_x/\nu_x + \alpha_x)\Delta t}$$
 et $c_x = \frac{d_x}{\nu_x(d_x + \nu_x \alpha_x)}(b_x - 1).$ (90)

Introduction

- Modélisation en ondes complètes –
- Chantasilata
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- Comporeile
- EDTD Dispersie
- EDTD Cond. limite
- FDTD PML
- FDTD CPML

Références

• Pour le cas élastique *P-SV*, il faut compter huit variables mémoires, soit pour les dérivées

$$\frac{\partial \tau_{xx}}{\partial x}, \frac{\partial \tau_{zz}}{\partial z}, \frac{\partial \tau_{xz}}{\partial x} \text{ et } \frac{\partial \tau_{xz}}{\partial z},$$

ainsi que pour

$$\frac{\partial v_x}{\partial x}, \frac{\partial v_z}{\partial z}, \frac{\partial v_x}{\partial z}$$
 et $\frac{\partial v_z}{\partial x}$.

• En insérant les variables mémoires dans le système d'équations (14) à (18), nous obtenons par exemple pour l'équation (14)

$$\frac{\partial v_x}{\partial t} = \frac{1}{\rho} \left(\frac{1}{\nu_x} \frac{\partial \tau_{xx}}{\partial x} + \zeta_x(t) * \frac{\partial \tau_{xx}}{\partial x} + \frac{1}{\nu_z} \frac{\partial \tau_{xz}}{\partial z} + \zeta_z(t) * \frac{\partial \tau_{xz}}{\partial z} \right)$$
(91)

Méth. FDTD – Implémentation des CPML

Introduction

- Modélisation en ondes complètes -
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilité
- DTD Dispersion
- DTD Cond. limites
- FDTD PML
- FDTD CPML

Références

• L'équation (91) sous forme discrète est ainsi

$$\frac{v_x^{m+1/2}(i,j) - v_x^{m-1/2}(i,j)}{\Delta t} = \frac{1}{\rho(i,j)} \left(\frac{\tau_{xx}^m(i+1/2,j) - \tau_{xx}^m(i-1/2,j)}{\nu_x(i,j)\Delta x} + \psi_{\tau_{xx,x}}^m(i,j) + \frac{\tau_{xz}^m(i,j+1/2) - \tau_{xz}^m(i,j-1/2)}{\nu_z(i,j)\Delta x} + \psi_{\tau_{xz,z}}^m(i,j) \right)$$
(92)

L'indice de la variable ψ_{τ_{xx,x}} la rattache à la dérivée ∂τ_{xx}/∂x.
La mise à jour des variables mémoires est

$$\begin{split} \psi^{m}_{\tau_{xx,x}}(i,j) &= b_{x}(i,j)\psi^{m-1}_{\tau_{xx,x}}(i,j) + c_{x}(i,j) \left(\frac{\tau^{m}_{xx}(i+1/2,j) - \tau^{m}_{xx}(i-1/2,j)}{\Delta x}\right) \\ \psi^{m}_{\tau_{xz,z}}(i,j) &= b_{z}(i,j)\psi^{m-1}_{\tau_{xz,z}}(i,j) + c_{z}(i,j) \left(\frac{\tau^{m}_{xz}(i+1/2,j) - \tau^{m}_{xz}(i-1/2,j)}{\Delta x}\right) \end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\begin{split} (93)$$

Méth. FDTD – Implémentation des CPML

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- cemporelle
- PDTD Stabilite
- =DTD Dispersion
- FDTD Cond. limites FDTD - PML
- FDTD CPML
- Références

• Pour l'équation de mise à jour (21), on a

$$v_{z}^{m^{+1/2}}(i+1/2,j+1/2) = \frac{\Delta t}{\rho(i+1/2,j+1/2)} \left[\frac{(\tau_{xz}^{m}(i+1,j+1/2) - \tau_{xz}^{m}(i,j+1/2))}{\nu_{x}(i+1/2,j+1/2)\Delta x} + \psi_{\tau_{xz,x}}^{m}(i+1/2,j+1/2) \frac{(\tau_{zz}^{m}(i+1/2,j+1) - \tau_{zz}^{m}(i+1/2,j))}{\nu_{z}(i+1/2,j+1/2)\Delta x} + \psi_{\tau_{zz,z}}^{m}(i+1/2,j+1/2) \right]$$
(95)

• La mise à jour des variables mémoires est

$$\psi_{\tau_{xz,x}}^{m}(i+1/2,j+1/2) = b_{x}(i+1/2,j+1/2)\psi_{\tau_{xz,x}}^{m-1}(i+1/2,j+1/2) + c_{x}(i+1/2,j+1/2) \left(\frac{\tau_{xz}^{m}(i+1,j+1/2) - \tau_{xz}^{m}(i,j+1/2)}{\Delta x}\right)$$
(96)

$$\psi_{\tau_{zz,z}}^{m}(i+1/2,j+1/2) = b_{z}(i+1/2,j+1/2)\psi_{\tau_{zz,z}}^{m-1}(i+1/2,j+1/2) + c_{z}(i+1/2,j+1/2) \left(\frac{\tau_{zz}^{m}(i+1/2,j+1) - \tau_{zz}^{m}(i+1/2,j)}{\Delta x}\right)$$
(97)

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Dáfároncos

• Pour l'équation (22), on a

$$\begin{aligned} \tau_{xx}^{m+1}(i+1/2,j) &= \tau_{xx}^{m}(i+1/2,j) + \\ & \left[(\lambda(i+1/2,j) + 2\mu(i+1/2,j)) \Delta t \right] \\ & \left[\frac{v_x^{m+1/2}(i+1,j) - v_x^{m+1/2}(i,j)}{\nu_x(i+1/2,j)\Delta x} + \psi_{v_{x,x}}^{m+1/2}(i+1/2,j) \right] + \\ & \left[\lambda(i+1/2,j)\Delta t \right] \\ & \left[\frac{v_z^{m+1/2}(i+1/2,j+1/2) - v_z^{m+1/2}(i+1/2,j-1/2)}{\nu_z(i+1/2,j)\Delta x} + \psi_{v_{x,z}}^{m+1/2}(i+1/2,j) \right] \end{aligned}$$
(98)

 Les équations de mise à jour des variables mémoires sont définies avec les coefficients évalués à (*i* + ¹/₂, *j*).

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
-

Références

• Pour l'équation (23), on a

$$\tau_{zz}^{m+1}(i+1/2,j) = \tau_{zz}^{m}(i+1/2,j) + \left[(\lambda(i+1/2,j)+2\mu(i+1/2,j)) \Delta t \right] \\ \left[\frac{v_{z}^{m+1/2}(i+1/2,j+1/2) - v_{z}^{m+1/2}(i+1/2,j-1/2)}{\nu_{z}(i+1/2,j)\Delta x} + \psi_{v_{z,z}}^{m+1/2}(i+1/2,j) \right] + \left[\lambda(i+1/2,j)\Delta t \right] \left[\frac{v_{x}^{m+1/2}(i+1,j) - v_{x}^{m+1/2}(i,j)}{\nu_{x}(i+1/2,j)\Delta x} + \psi_{v_{x,x}}^{m+1/2}(i+1/2,j) \right]$$
(99)

 Les équations de mise à jour des variables mémoires sont définies avec les coefficients évalués à (i + 1/2, j).

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisatio
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- FDTD CPML
- Références

• Finalement, pour l'équation (24), on a

$$\tau_{xz}^{m+1}(i,j+1/2) = \tau_{xz}^{m}(i,j+1/2) + \left[\mu(i,j+1/2)\Delta t\right] \left[\frac{v_x^{m+1/2}(i,j+1) - v_x^{m+1/2}(i,j)}{v_z(i,j+1/2)\Delta x} + \psi_{v_{x,z}}^{m+1/2}(i,j+1/2) + \frac{v_z^{m+1/2}(i+1/2,j+1/2) - v_z^{m+1/2}(i-1/2,j+1/2)}{v_x(i,j+1/2)\Delta x} + \psi_{v_{z,x}}^{m+1/2}(i,j+1/2)\right]$$
(100)

 Les équations de mise à jour des variables mémoires sont définies avec les coefficients évalués à (*i*, *j* + ¹/₂).

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- . FDTD - Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- L'ordre dans lequel les mises à jour sont effectuées est important;
- Par exemple,
 - la mise à jour des vitesses v^{m+1/2} dépend des contraintes τ^m et des variables mémoire ψ^m;
 - la mise à jour de ψ^m dépend de τ^m et ψ^{m-1} ;
 - il faut donc mettre d'abord à jour ψ^m et ensuite $v^{m+1/2}$.
- Également, il faut sortir Δx des termes constants devant les dérivées (i.e. b1, b2, lm, l et m), sinon la mise à jour des variables mémoires ne peut se faire correctement (voir l'équation (89)).

Introduction

Modélisation en ondes complètes –

Sismique

Généralités

Théorie

Méthode FDTD

DTD - Discrétisation

FDTD - Source

DTD - March

EDTD - Stabilite

DTD - Dispersion

DTD - Cond. limites

EDTD - CPMI

Références

• Une façon courante d'exprimer d_x est

$$d_x(x') = d_0 \left(\frac{x'}{N_{PML}\Delta x}\right)^{n_d},$$
(101)

où

- *x*′ est la distance entre l'interface PML-domaine de modélisation, et la fin des PML;
- *n_d* vaut généralement 2,
- *N*_{PML} est le nombre de couches PML,
- *d*₀ est fonction du coefficient de réflexion théorique *R_c* d'une onde voyageant à *V_p* et atteignant la fin des PML à incidence normale, et vaut (Collino and Tsogka, 2001)

$$d_0 = (n_d + 1) \log \left(\frac{1}{R_c}\right) \frac{V_P}{2N_{PML} \Delta x}.$$
 (102)

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilit
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

• Le profile de v_x varie typiquement selon

$$\nu_{x}(x') = 1 + (\nu_{o} - 1) \left(\frac{x'}{N_{PML}\Delta x}\right)^{n_{\nu}}$$
(103)

avec $n_{\nu} = 2$ et $\nu_0 \ge 1$.

• Le profile de α_x obéit habituellement à

$$\alpha_x(x') = \alpha_0 \left[1 - \left(\frac{x'}{N_{PML} \Delta x} \right)^{n_\alpha} \right].$$
(104)

- Selon Roden et Gedney (2000), il est préférable que α_x varie linéairement (n_α = 1) entre une valeur maximale α₀ à l'entrée des PML et zéro à la fin.
- Komatitsch et Martin (2007) proposent d'utiliser $\alpha_0 = \pi f_0$, où f_0 est la fréquence dominante de la source.

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilité
- FDTD Dispersion
- FDTD Cond. limites
- FDTD PML
- Références

- On remarque que les coefficients des PML doivent être définis aux noeuds réguliers et au noeuds décalés, en fonction des variables impliquées.
 - Ces coefficients (v_x, v_z, b_x, b_z, c_x et c_z) peuvent être calculés à l'avance et stockés en mémoire.
- Sur les noeuds décalés, il faut s'assurer d'évaluer correctement les coefficients.
 - Par exemple, pour 3 couches PML, il faut calculer 4 coefficients sur les noeuds décalés à la fin de la grille pour assurer une transition correcte au début des PML, *ceci dans le cas où les limites des PML sont définies aux noeuds réguliers*.

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- FDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limites
- EDTD CPMI

- Le choix du nombre de couches PML dépend du degré d'absorption désiré, typiquement 10 et plus;
- Habituellement, les coefficients des PML sont les mêmes selon *x* et *z*.
- Exemple pour nx = 30, $\Delta x = 10$, $N_{PML} = 10$, $R_c = 0.001$ ($V_P = 4000$), $\nu_0 = 2$ et $\alpha_0 = 10\pi$

Introduction

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- EDTD Stabilite
- FDTD Dispersion
- FDTD Cond. limite:
- FDTD CPML

Références

- En 2D, les coefficients affectés aux dérivées en *x* varient seulement selon cette direction;
- Il en est de même pour les dérivées en *z*.

b_₂@j

х

50

100

200

250

0 100 200

№ 150

0.7

0.6

0.9

- Modélisation en ondes complètes – Sismique Généralités Théorie Méthode FDTD FDTD - Discrétisation FDTD - Source
- DTD March
- EDTD Stabilitá
- FDTD Dispersion
- FDTD Cond. limite
- FDTD CPML

Références

- Une façon d'évaluer la performance des PML est de mesurer l'énergie *E* pour tout le domaine de modélisation en fonction du temps, pour quantifier l'énergie résiduelle une fois que les ondes auraient dû être entièrement absorbées.
- L'énergie totale *E* est définie

$$E = \frac{1}{2}\rho \|\mathbf{v}\|^2 + \frac{1}{2}\left(\tau_{xx}\epsilon_{xx} + 2\tau_{xz}\epsilon_{xz} + \tau_{zz}\epsilon_{zz}\right)$$
(105)

où $\mathbf{v} = [v_x v_z]$ et les déformations ϵ sont évaluées avec l'équation (2).

• Concrètement, on calcule *E* en tout point du domaine de modélisation (*excluant les PML*), pour en faire la somme et stocker la valeur pour l'itération en cours.

Méthode FDTD – Performance des PML

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisati
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilit
- FDTD Dispersion
- FDTD Cond. limite
- FDTD PML
- FDTD CPML
- Références

Méth. FDTD – Performance des PML

- Modélisation en ondes complètes –
- Sismique
- Généralités
- Théorie
- Méthode FDTD
- FDTD Discrétisation
- FDTD Source
- FDTD March
- temporelle
- FDTD Stabilit
- FDTD Dispersion
- FDTD Cond. limite FDTD - PML
- EDTD CPMI
- Références

Modélisation en ondes complètes – Sismique

Références

Références

Introduction

Modélisation en ondes complètes – Sismique

- Bérenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. *Journal of Computational Physics*, 114:185–200
- Carcione, J. M., Kosloff, D., and Kosloff, R. (1988). Viscoacoustic wave propagation simulation in the earth. *Geophysics*, 53(6) :769–777
- Carcione, J. M., Herman, G. C., and ten Kroode, A. P. E. (2002). Seismic modeling. *Geophysics*, 67(4):1304–1325
- Carcione, J. M. (2007). *Wave Fields in Real Media : Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media,* volume 38 of *Handbook of Geophysical Exploration : Seismic Exploration.* Elsevier, 2nd edition

Références

Introduction

Modélisation en ondes complètes – Sismique

- Clayton, R. and Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. *Bulletin* of the Seismological Society of America, 67(6):1529–1540
- Collino, F. and Tsogka, C. (2001). Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. *Geophysics*, 66(1):294–307
- Komatitsch, D. and Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. *Geophysics*, 72(5) :SM155–SM167
- Moczo, P., Kristek, J., and Bystrický, E. (2000). Stability and grid dispersion of the P-SV 4th-order staggered-grid finite-difference schemes. *Studia Geophysica et Geodaetica*, 44:381–402

Références

Introduction

Modélisation en ondes complètes – Sismique

- Moczo, P., Kristek, J., Vavryčuk, V., Archuleta, R. J., and Halada, L. (2002). 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. *Bulletin of the Seismological Society of America*, 92(8):3042–3066
- Robertsson, J. O. A. (1996). A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. *Geophysics*, 61(6):1921–1934
- Roden, J. A. and Gedney, S. D. (2000). Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media. *Microwave and Optical Technology Letters*, 27(5):334–339

Modélisation en ondes complètes – Sismique

- Taflove, A. and Hagness, S. C. (2005). *Computational electrodynamics : the finite-difference time-domain method*. Artech House, 3rd edition
- Virieux, J. (1984). SH-wave propagation in heterogeneous media : Velocity-stress finite-difference method. *Geophysics*, 49(11):1933–1942
- Virieux, J. (1986). P-SV wave propagation in heterogeneous media : Velocity-stress finite-difference method. *Geophysics*, 51(4) :889–901