

-			

Magnétisme

Références

Annexes

GEO1302 – Modélisation et inversion en géophysique 2 - Gravimétrie et magnétisme

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.2.9 Hiver 2020

Théorie

Prisme rectangulaire

Polvèdre

Système matriciel

Magnétisme

Références

Annexes

Gravimétrie

Gravimétrie

Théorie

- Prisme rectangulaire droit
- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

- Le potentiel gravitationnel obéit au principe de superposition : le potentiel gravitationnel d'un nombre fini de masses est la somme de l'attraction de chacune de ces masses.
- Si les masses sont infinitésimales (d*m*), le potentiel *U* observé en *P* est ainsi

$$U(P) = G \int_{V} \frac{\mathrm{d}m}{r} \tag{1}$$

ou bien

$$U(P) = G \int_{V} \frac{\rho(Q)}{r} \mathrm{d}v, \qquad (2)$$

où *G* est la constante gravitationnelle, *V* est le volume occupé par la masse totale, ρ est la densité, *Q* est le point d'intégration, et *r* est la distance entre *P* et *Q*.

Gravimétrie

Théorie

- Prisme rectangulaire droit
- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

L'attraction g causée par un volume de densité *ρ* est le gradient du potentiel :

$$\mathbf{g} = \nabla U$$
$$= -G \int_{V} \rho \frac{\hat{\mathbf{r}}}{r^{2}} \mathrm{d}v. \tag{3}$$

• Dans la pratique, seule la composante verticale de **g** est mesurée, ce qui donne (en coordonnées cartésiennes)

$$g(x, y, z) = \frac{\partial U}{\partial z}$$

= $-G \int_{z'} \int_{y'} \int_{x'} \rho(x', y', z') \frac{z - z'}{r^3} dx' dy' dz',$ (4)

où
$$r = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$
.

Gravimétrie

Théorie

- Prisme rectangulaire droit
- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

- Typiquement, la modélisation en gravimétrie consiste à calculer *g*(*x*, *y*, *z*) avec l'équation (4) pour toutes les cellules du modèle géologique.
- Mais dans les faits, on mesure la variation de *g* par rapport à un point de référence donné, pour estimer le contraste de densité (Δρ) par rapport à un encaissant;
 - On peut donc ne calculer que la réponse des corps qui ont une densité différente de celle de l'encaissant.
- La solution de l'intégrale triple dépend de la discrétisation du corps.
- Des solutions particulières ont été proposées pour des
 - prismes rectangulaires droits;
 - prismes polygonaux droits;
 - polyèdres.

Théorie - Prisme rectangulaire droit

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

• Pour un prisme rectangulaire droit défini par les limites $x'_1 \le x \le x'_2$, $y'_1 \le y \le y'_2$ et $z'_1 \le z \le z'_2$, la composante verticale *g* au point d'observation *O* vaut

6

$$g = -G\rho \int_{x_1'}^{x_2'} \int_{y_1'}^{y_2'} \int_{z_1'}^{z_2'} \frac{z - z'}{r^3} dx' dy' dz'.$$
 (5)

Théorie - Prisme rectangulaire droit

Gravimétrie

Théorie

Prisme rectangulaire droit

- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

- Plusieurs solutions ont été proposées pour le cas du prisme rectangulaire droit.
- Il est important de noter que *certaines solutions ne sont pas valides si le point d'observation est sur un des coins, une des faces, ou à l'intérieur du prisme.*
- Une solution valide sur les faces (excluant les arêtes) et à l'intérieur est (Li et Chouteau, 1998)

$$g = -G\rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \times \left[x_{i} \ln \left(y_{j} + r_{ijk} \right) + y_{j} \ln \left(x_{i} + r_{ijk} \right) + z_{k} \arctan \frac{z_{k} r_{ijk}}{x_{i} y_{j}} \right], \quad (6)$$

où
$$x_i = x - x'_i, y_j = y - y'_j, z_k = z - z'_k,$$

 $r_{ijk} = \sqrt{x_i^2 + y_j^2 + z_k^2}$ et $\mu_{ijk} = (-1)^i (-1)^j (-1)^k.$

Gravimetrie	
Théorie	
Prisme rectangulaire droit	
Polyèdre	
Système matriciel	
Magnétisme	
Références	
Annexes	

- Note relative à l'implémentation de l'équation (6) sous Python/MATLAB :
 - la fonction atan2 (ou arctan2 sous numpy) doit être utilisée au détriment de atan (ou arctan sous numpy).

Pourquoi?

Théorie

Prisme rectangulaire droit

- Polyèdre
- Système matriciel
- Magnétisme

Références

Annexes

- Créez un fichier Python gravi.py;
- Dans ce fichier, écrivez une fonction prd pour calculer la réponse d'un prisme rectangulaire droit;
- Votre fonction doit prendre les variables suivantes en entrée :
 - rho : densité [g/cm^3]
 - x0 : coordonnées [x y z] du point d'observation [m]
 - x : coord inférieure et supérieure du prisme selon x [m]
 - y : coord inférieure et supérieure du prisme selon y [m]
 - **z** : coord inférieure et supérieure du prisme selon *z* [m] et doit retourner la réponse en mgal.
- Testez votre routine avec les valeurs rho=0.2, x=(10, 15), y=(20, 25) et z=(5, 15) pour
 - x0=(0, 0, 0)
 - x0=(12.5, 22.5, 10)

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

• Le polyèdre constitue la forme géométrique la plus versatile pour représenter des corps de géométrie arbitraire.

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

- Singh et Guptasarma (2001) : En vertu du théorème de flux-divergence, l'intégrale sur le volume de l'équation (3) peut être remplacée par une intégrale de surface.
- Il est alors possible d'évaluer la composante de la gravité **g** dans la direction du vecteur unitaire **â** par

$$\mathbf{g} \cdot \hat{\mathbf{a}} = -G\rho \iint_{S} \left(\frac{1}{r}\right) \hat{\mathbf{a}} \cdot \hat{\mathbf{n}} \,\mathrm{d}s,\tag{7}$$

où *r* est la distance entre *O* et l'aire d*s* à la surface du corps, et $\hat{\mathbf{n}}$ est le vecteur unitaire normal à d*s*.

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

- L'élément ds produit une attraction orientée selon r mais de sens contraire, ce qui permet de remplacer â par - (r/r).
- Une expression pratique est obtenue en définissant une densité de masse surfacique (σ') par

$$\sigma' = \rho \mathbf{r} \cdot \hat{\mathbf{n}}.\tag{8}$$

- L'attraction d'un corps est la même que l'attraction produite par un distribution fictive de σ' sur la surface du corps.
- Nous avons maintenant

$$\mathbf{g} = G\rho \iint (1/r)(\mathbf{r}/r) \cdot \hat{\mathbf{n}} \, \mathrm{d}s$$
$$= G \iint \left(\sigma'/r^2\right) \mathrm{d}s. \tag{9}$$

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Systeme matricle

Magnétisme

Références

Annexes

- La composante verticale g est obtenue en multipliant l'intégrande par le rapport (z/r).
- Dans le cas où le corps est délimité par un polyèdre, i.e. un ensemble de n_f faces planes, nous avons

$$g = G \sum_{i=1}^{n_f} \rho d_i \iint_i \left(\frac{z}{r^3}\right) \mathrm{d}s,\tag{10}$$

où $d_i = \mathbf{r} \cdot \hat{\mathbf{n}}_i$.

- Le vecteur $\hat{\mathbf{n}}_i$ peut être obtenu à partir du produit vectoriel des arêtes de la face *i* :
 - Soient n_s sommets s_{i,k} appartenant à la face i, où l'indice k défini l'ordre antihoraire lorsque l'objet est vu de l'extérieur;
 - le vecteur **n**_i vaut

$$\mathbf{n}_{i} = \sum_{l=2}^{n_{s}-1} \left(\mathbf{s}_{i,l} - \mathbf{s}_{i,1} \right) \times \left(\mathbf{s}_{i,l+1} - \mathbf{s}_{i,1} \right),$$
(11)

et, par définition,

$$\hat{\mathbf{n}}_i = \frac{\mathbf{n}_i}{|\mathbf{n}_i|}.\tag{12}$$

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

- Pour arriver à une expression utilisable numériquement, l'intégrale de surface est convertie en intégrale de contour.
- On peut montrer que

$$\iint_{i} \left(\frac{z}{r^{3}}\right) \mathrm{d}s = -\left(n\Omega + mP_{i} - \ell Q_{i}\right),\tag{13}$$

où (ℓ, m, n) sont les composantes de $\hat{\mathbf{n}}_i$, Ω est l'angle solide de la face *i* au point *O*, et où *P*_i et *Q*_i sont les sommes

$$P_i = \sum_{j=1}^{n_a} P_{ij}$$
 et $Q_i = \sum_{j=1}^{n_a} Q_{ij}$, (14)

avec n_a le nombre d'arêtes sur la face *i*.

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

• Les composantes P_{ij} et Q_{ij} sont égales à $P_{ij} = IL_x$ et $Q_{ij} = IL_y$

avec $L_x = x_2 - x_1$ et $L_y = y_2 - y_1$ où (x_1, y_1, z_1) et (x_2, y_2, z_2) sont les coordonnées du début et de la fin du segment, et où

$$I = \frac{1}{L} \ln \left[\frac{\sqrt{L^2 + b + r_1^2} + L + \frac{b}{2L}}{r_1 + \frac{b}{2L}} \right] \text{ si } (r_1 + b/2L) \neq 0 \quad (16)$$

et

$$I = \frac{1}{L} \ln\left[\frac{|L - r_1|}{r_1}\right] \text{ si } (r_1 + b/2L) = 0, \tag{17}$$

(15)

avec

$$L = \sqrt{L_x^2 + L_y^2 + L_z^2}, \ b = 2(x_1L_x + y_1L_y + z_1L_z),$$
(18)
$$r_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

Théorie

Prisme rectangulaire droit

- Polyèdre
- Système matriciel
- Magnétisme

Références

Annexes

- À l'invite de commande python, entrez help(np.kron)
- Essayez np.kron([[1,2],[3,4]],np.ones((2,1)))
- Essayez np.kron([[1,2],[3,4]],np.ones((1,2)))
- Exercice :
 - Soient des points définis aux coordonnées
 - x = np.arange(0.0,0.8,0.2)
 - y = np.arange(0.1,0.5,0.1)
 - z = np.arange(-0.3,0.4,0.3)
 - Construisez une matrice npts×3 contenant les coordonnées *x*, *y*, *z* de chacun des points, un point par ligne
 - Faites varier d'abord la coordonnées *z*, ensuite la coordonnées *y* et finalement la coordonnée *x*, i.e.

$$\begin{bmatrix} x_1 & y_1 & z_1 \\ x_1 & y_1 & z_2 \\ x_1 & y_2 & z_1 \\ x_1 & y_2 & z_2 \\ x_2 & y_1 & z_1 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Système matriciel

Gravimétrie

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

 Lorsque le problème direct est linéaire, comme en gravimétrie, ou qu'il a été linéarisé, il est fréquent en inversion de le représenter par un produit matriciel, souvent noté

$$\mathbf{Gm} = \mathbf{d},\tag{19}$$

où

- m est un vecteur M × 1 contienant les paramètres du modèle (la densité des corps en gravimétrie);
- **d** est le vecteur *N* × 1 des données;
- **G** est l'opérateur direct (*data kernel*), de taille *N* × *M*;
 - $G(n,m) \equiv g_{nm}$, la contribution du m^e corps à la n^e donnée.
- Cette approche n'est intéressante que pour les situations où :
 - le maillage ne change pas;
 - les calculs sont répétés pour différents vecteurs m.

Théorie

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

• Pour une grille régulière, constituée de prismes rectangulaires droits, on aurait

$$g_{nm} = -G \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \left[x_i \ln \left(y_j + r_{ijk} \right) + y_j \ln \left(x_i + r_{ijk} \right) + z_k \arctan \frac{z_k r_{ijk}}{x_i y_j} \right],$$

où $x_i = x(n) - x'_i(m), y_j = y(n) - y'_j(m), \text{ et } z_k = z(n) - z'_k(m).$

• Remarquez l'absence du terme de densité.

Système matriciel - Exercice

- Théorie
- Prisme rectangulaire droit
- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

Implémenter la construction de la matrice **G** pour une grille régulière (prismes rectangulaires droits)

- Pour construire le système matriciel, il faut se donner une convention pour numéroter les prismes;
- Une convention possible est de faire varier
 - d'abord le numéro de ligne (indice *i* selon l'axe des *x*),
 - ensuite le numéro de colonne (indice j selon l'axe des y),
 - finalement le numéro de couche (indice *k* selon l'axe des *z*).

Python

MATLAB

Système matriciel - Exercice

Gravimétrie

- Théorie
- Prisme rectangulaire droit
- Polyèdre
- Système matriciel
- Magnétisme
- Références
- Annexes

- Dans votre fichier gravi.py, créez une classe Grille pour gérer des grilles régulières (prismes rectangulaires droits)
 - La taille de la grille est de $n_x \times n_y \times n_z$ prismes
- Le constructeur sera

```
class Grille:
    def __init__(self, x, y, z):
    """
    Input
    x: coordonnées des noeuds selon x (nx+1 x 1)
    y: coordonnées des noeuds selon y (ny+1 x 1)
    z: coordonnées des noeuds selon z (nz+1 x 1)
    """
    self.x = x
    self.y = y
    self.z = z
```

• Définissez une méthode ind qui retourne l'indice *m* d'un prisme dans la grille, à partir de ses indices (*i*, *j*, *k*)

Prisme rectangulaire droit

Polyèdre

Système matriciel

Magnétisme

Références

Annexes

• Ajoutez finalement à votre classe Grille une méthode prd_G, qui utilise votre fonction prd, pour construire la matrice G

```
def prd_G(self, x0):
    """
    PRD_G - Opérateur direct gravimétrique pour une
    grille de prismes rectangulaires droits
```

```
G = prd_G(x0)
```

Input

x0: coordonnées des points d'observation (N x 3)

Output

G: opérateur direct (array numpy N x M)

Système matriciel - Exercice

```
    Testez votre fonction avec les commandes

                 g = Grille(x=np.arange(-8.5,9.0)),
Système matriciel
                             y=np.arange(-10.5,11.0),
                             z=np.arange(10.0))
                 x0 = np.array([[0.0, 0.0, 0.0]],
                                 [1.0, 0.0, 0.0],
                                  [2.0, 0.0, 0.0]])
                 tic = time.time()
                 G = g.prd G(x0)
                 t_G = time.time() - tic
                 rho = np.zeros((g.nc,))
                 rho[g.ind(8,10,5)] = 1.0
                 tic = time.time()
                 gz = np.dot(G, rho)
                 t_mult = time.time() - tic
                 print(t G. t mult)
```


Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

Magnétisme

Équations de Maxwell

Gravimétrie

Magnétisme

Équations de Maxwell

Modele lineair

Références

Annexes

• Le problème direct en magnétisme est solutionné en partant des équations de Maxwell :

$$7 \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (20)

$$\nabla \cdot \mathbf{D} = \rho \tag{21}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
(22)
$$\nabla \cdot \mathbf{B} = 0$$
(23)

où

- **B** est le champ d'induction;
- H est le champ magnétique;
- D est le champ de déplacement;
- E est le champ électrique;
- *ρ* est la densité de charge;
- J est la densité de courant électrique.

Équations constitutives

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Références

Annexes

• Les grandeurs électrique **D** et **E** ainsi que les grandeurs magnétiques **B** et **H** sont liées par les équations constitutives :

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \tag{24}$$

$$\mathbf{B} = \mu_0 \left(\mathbf{H} + \mathbf{M} \right) \tag{25}$$
$$\mathbf{I} = \sigma \mathbf{E} \tag{26}$$

où

- *ε*₀ est la permittivité diélectrique du vide;
- μ_o est la perméabilité du vide;
- *σ* est la conductivité électrique;
- **P** est la polarisation;
- M est l'aimantation.

Équations constitutives

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéair Volumos finis

Références

Annexes

• Dans les matériaux linéaires isotropes sans pertes, **P** et **M** sont des fonctions linéaires de **E** et **H** respectivement, i.e.

$$\mathbf{D} = \boldsymbol{\epsilon} \mathbf{E} = \boldsymbol{\epsilon}_0 \boldsymbol{\epsilon}_r \mathbf{E} \tag{27}$$

$$\mathbf{B} = \mu \mathbf{H} = \mu_0 \mu_r \mathbf{H} \tag{28}$$

avec ϵ_r la permittivité relative et μ_r la perméabilité relative.

Si le milieu est anisotrope (et linéaire sans pertes), ε_r et μ_r deviennent les tenseurs ε_r et μ_r:

$$\overline{\overline{\epsilon}}_{r} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{bmatrix}$$

$$\overline{\overline{\mu}}_{r} = \begin{bmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{bmatrix}$$

$$(29)$$

Unités SI

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéair

Références

Annexes

- En unités SI,
 - **B** est exprimé en tesla (T) ou weber/m²;
 - H est exprimé en A/m;
 - μ_o vaut $4\pi \times 10^{-7}$ (henry/m).
 - χ est la susceptibilité (sans dimension).
- Dans le vide (ou dans l'air)

$$\mathbf{B} = \mu_o \mathbf{H}.\tag{31}$$

• Si la matière est polarisable, nous avons

$$\mathbf{B} = \mu_o(\mathbf{H} + \mathbf{M}) \tag{32}$$

$$=\mu_o(\mathbf{H}+\chi\mathbf{H})\tag{33}$$

$$=\mu_o(1+\chi)\mathbf{H}\tag{34}$$

$$= \mu \mathbf{H},\tag{35}$$

$$\mu = \mu_o (1 + \chi) \tag{36}$$

• χ est la susceptibilité (sans dimension).

Unités SI

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Références

Annexes

- Si la matière possède une aimantation rémanente, elle s'ajoute à l'aimantation induite.
- L'aimantation totale M vaut

$$\mathbf{M} = \mathbf{M}_i + \mathbf{M}_r \tag{37}$$
$$= \chi \mathbf{H} + \mathbf{M}_r \tag{38}$$

où l'aimantation induite est \mathbf{M}_i et l'aimantation rémanente est \mathbf{M}_r .

• Le tableau du lien suivant présente les unités en magnétisme: http://www.ieeemagnetics.org/index.php? option=com_content&view=article&id=118&Itemid=107

Théorie - Modèle linéaire

Gravimétrie

- Magnétisme Équations de Maxw
- Modèle linéaire Volumes finis
- Références
- Annexes

 Une approche simple et rapide consiste à considérer qu'un corps aimanté peut être représenté par une somme de moments dipolaires m_i. i.e.

$$\mathbf{M} = \frac{1}{V} \sum_{i} \mathbf{m}_{i}.$$
 (39)

- Cette approche suppose que les moments magnétiques sont faibles et n'interagissent pas entre eux.
- Le potentiel magnétique d'un moment dipolaire est

$$V = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \cdot \hat{\mathbf{r}}}{r^2}.$$

Théorie - Modèle linéaire

Références

Annexes

• Le champ magnétique d'un corps aimanté de volume *V*, observé au point *P* est

$$\mathbf{B} = -\nabla V = -\frac{\mu_0}{4\pi} \nabla \int_V \mathbf{M} \cdot \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} dv, \qquad (41)$$

où μ_0 est la perméabilité magnétique du vide, **M** est l'aimantation du corps, et \mathbf{r}_0 est la position de l'élément de volume d*v*.

Théorie - Modèle linéaire

Magnétisme

Modèle linéaire

volumes finis

Références

Annexes

• L'aimantation du corps peut être considérée selon différents modèles

Magnétisme Équations de Max

Modèle linéaire Volumes finis

Références

Annexes

- Le modèle du volume d'aimantation s'avère pratique si on peut décomposer le corps en éléments de volume de faibles dimensions (comparativement à la distance au pt d'observation).
- Un *i*^{*e*} élément de volume *V*_{*i*} peut être vu comme un dipôle de moment magnétique

$$\mathbf{m}_i = V_i \chi_m \mathbf{H},\tag{42}$$

où χ_m est sa susceptibillité magnétique et **H** est le champ magnétique terrestre.

• Comme on a vu, l'aimantation du corps vaut

$$\mathbf{M} = \frac{1}{V} \sum_{i} \mathbf{m}_{i}.$$

Magnétisme Équations de May

Modèle linéaire Volumes finis

Références

Annexes

• Le champ magnétique d'un dipôle **m**_{*i*} à une distance **r**_{*i*} du point d'observation est

$$\mathbf{B}_{i} = \frac{\mu_{0}}{4\pi} \left[\frac{3 \left(\mathbf{m}_{i} \cdot \mathbf{r}_{i} \right) \mathbf{r}_{i}}{r_{i}^{5}} - \frac{\mathbf{m}_{i}}{r_{i}^{3}} \right].$$
(43)

• Le champ mesuré à ce point d'observation est

$$\mathbf{B} = \sum_{i=1}^{N} \mathbf{B}_i + \mu_0 \mathbf{H},\tag{44}$$

où N est le nombre de dipôles.

Exemple - Volume d'aimantation

Gravimétrie

Magnétisme Équations de Maxw

Modèle linéaire Volumes finis

Références

Annexes

- Guo *et al.* (2015) ont utilisé l'approche du volume d'aimantation pour modéliser la réponse de conduits ferreux.
- Le conduit est discrétisé de sections cylindriques divisées en éléments :

Magnétisme Équations de Maxv

Modèle linéaire Volumes finis

Références

Annexes

- La démagnétisation est prise en compte en ajustant la susceptibilité en fonction d'un facteur de démagnétisation (voir en annexe) choisi de façon *ad hoc*.
- La réponse d'un conduit réel a pu être reproduite :

Théorie - Volumes finis

Gravimétrie

Magnétisme Équations de Maxw

Volumes finis

Références

Annexes

- Le modèle du corps aimanté vu précédemment suppose que le champ induit est faible par rapport au champ primaire.
- Cette approximation n'est pas valide lorsque la susceptibilité est élevée, en particulier en présence de démagnétisation.
- Une solution basée sur les équations de Maxwell permet de tenir compte adéquatement des champs induits.
- La méthode des volumes finis (VF) permet de résoudre les équations de Maxwell pour le problème magnétostatique :
 - En l'absence de charges libres et de source de courant électrique et lorsqu'il n'y a pas de variation temporelle des champs, nous avons

$$\nabla \times \mathbf{H} = 0 \tag{45}$$

$$\nabla \cdot \mathbf{B} = 0. \tag{46}$$

• La relation $\mathbf{B} = \mu \mathbf{H}$ est toujours valide.

Gravimétrie

- Magnétisme Équations de Maxwe
- Volumes finis
- Références
- Annexes

- Avec la méthode des VF, le domaine est discrétisé en voxels à l'intérieur desquels la perméabilité μ est constante, mais où μ varie d'un voxel à l'autre.
- À l'interface entre deux voxels, *la composante tangentielle du champ* **H** *est continue* :

 $\mathbf{H}_{1} \times \hat{\mathbf{n}} = \mathbf{H}_{2} \times \hat{\mathbf{n}} \quad \text{ce qui implique} \quad \mu_{1}^{-1} \mathbf{B}_{1} \times \hat{\mathbf{n}} = \mu_{2}^{-1} \mathbf{B}_{2} \times \hat{\mathbf{n}}$ (47)

• La composante normale de l'induction **B** est également continue :

 $\mathbf{B}_1 \cdot \hat{\mathbf{n}} = \mathbf{B}_2 \cdot \hat{\mathbf{n}}$ ce qui implique $\mu_1 \mathbf{H}_1 \cdot \hat{\mathbf{n}} = \mu_2 \mathbf{H}_2 \cdot \hat{\mathbf{n}}$ (48)

Magnétisme Équations de Max

Modèle linéaire

Volumes finis

Références

Annexes

L'équation (45) permet d'exprimer le champ magnétique en fonction d'un potentiel scalaire φ, par

$$\mathbf{H} = \nabla \phi. \tag{49}$$

• L'équation (49), exprimée en terme de **B** et *μ*,

$$\mathbf{B} = \mu \nabla \phi \tag{50}$$

ainsi que les équations (46) et (48) seront discrétisées pour construire le système numérique à résoudre.

• L'approche présentée dans la suite est tirée de Lelièvre (2003).

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

- Le système discret repose sur une grille décalée :
 - les composantes du champ sont situées aux centres des faces du voxels;
 - le potentiel scalaire est localisé au centre du voxel.
- Ce schéma permet de respecter les conditions de continuités aux interfaces et de calculer la dérivée de φ avec un opérateur de différence finie centrée.

- Magnétisme
- Équations de Maxwel
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Le domaine est divisé en $nc = nx \times ny \times nz$ voxels.
- Les coordonnées de noeuds sont

$$x_i: x_1, x_2, x_3, \dots, x_{nx+1}$$
 (51)

$$y_j: y_1, y_2, y_3, \dots, y_{ny+1}$$
 (52)

$$z_k: z_1, z_2, z_3, \dots, x_{nz+1}$$
 (53)

- Sur la face x_i, les indices sont décalés en y et z pour le champ B^x;
- Un jeu similaire survient pour *B^y* et *B^z*.

Gravimétrie

- Magnétisme Équations de Maxw
- Modèle linéaire
- Volumes finis
- Références

Annexes

• La longueur des côtés des voxels est

 $hx_i: hx_1, hx_2, \dots, hx_{nx}$; $hx_i = x_{i+1} - x_i$ (54)

$$hy_j : hy_1, hy_2, \dots, hy_{ny}$$
; $hy_j = y_{j+1} - y_j$ (55)

$$hz_k : hz_1, hz_2, \dots, hz_{nz}$$
; $hz_k = z_{k+1} - z_k$ (56)

• Les coordonnées des centres des voxels sont

$$x_{i+1/2}: x_{1+1/2}, x_{2+1/2}, \dots, x_{nx+1/2}$$
(57)

$$y_{j+1/2}: y_{1+1/2}, y_{2+1/2}, \dots, y_{ny+1/2}$$
(58)

$$z_{k+1/2}: z_{1+1/2}, z_{2+1/2}, \dots, x_{nz+1/2}$$
(59)

• La distance entre les centres des voxels est

$$\Delta x_i : \Delta x_1, \Delta x_2, \dots, \Delta x_{nx-1} \quad ; \quad \Delta x_i = x_{i+3/2} - x_{i+1/2} = (hx_i + hx_{i+1})/2$$
(60)

$$\Delta y_j: \Delta y_1, \Delta y_2, \dots, \Delta y_{ny-1} \quad ; \quad \Delta y_j = y_{j+3/2} - y_{j+1/2} = (hy_j + hy_{j+1})/2 \eqno(61)$$

$$\Delta z_k : \Delta z_1, \Delta z_2, \dots, \Delta z_{nz-1} \quad ; \quad \Delta z_k = z_{k+3/2} - z_{k+1/2} = (hz_k + hz_{k+1})/2 \tag{62}$$

- Magnétisme Équations de Maxv
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- La solution du problème est obtenue en déterminant les valeurs de φ et B sur tout le domaine.
 - ϕ doit être évalué aux *nc* voxels;
 - *B^x* doit être évalué aux (*nx* + 1) × *ny* × *nz* faces avec un vecteur normal selon *x*;
 - *B^y* doit être évalué aux *nx* × (*ny* + 1) × *nz* faces avec un vecteur normal selon *y*;
 - B^z doit être évalué aux $nx \times ny \times (nz + 1)$ faces avec un vecteur normal selon *z*.
- Conditions aux frontières pratiques : poser que **B** aux limites du domaine est égal au champ terrestre ambiant;
 - Il faut dans ce cas définir une zone tampon autour du domaine où χ est égal à zéro, de façon à ce que le champ induit soit négligeable aux frontières.
 - Les valeurs de **B** doivent alors être déterminées seulement sur les faces intérieures
 - Le nombre total d'inconnues pour **B** est ainsi

$$nf = \underbrace{(nx-1) \times ny \times nz}_{nfx} + \underbrace{nx \times (ny-1) \times nz}_{nfy} + \underbrace{nx \times ny \times (nz-1)}_{nfz}.$$
 (63)

- Magnétisme
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Créez une classe GrilleVF en vous basant sur votre classe Grille
- Ajoutez les attributs suivants
 - hx, hy, hz contenant les longueurs des côtés des voxels;
 - xc,yc,zc contenant les coordonnées des centres des voxels;
 - dx, dy, dz contenant les distances entre les centres des voxels;
 - Ajoutez aussi des attributs pour *nx*, *ny*, *nz*, *nc*, *nfx*, *nfy*, *nfz*, *nf*
- Modifiez finalement la méthode ind pour que i, j et k puisse contenir chacun plusieurs indices.
 - Les indices retournés doivent être classés en ordre croissant;
 - Vérifiez que les indices sont à l'intérieur de la grille.

- Magnétisme Équations de Max
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Une discrétisation par volumes finis est une discrétisation de la formulation faible de l'équation aux dérivées partielles.
 - Qu'est-ce qu'une formulation faible implique?
- Avec cette discrétisation, l'espace est décomposé en petits "volumes finis", qui correspondent aux voxels de la grille.
- Sur ces volumes, les équations devant être discrétisées sont

$$\int_{V} \nabla \cdot \mathbf{B} \, \mathrm{d}v = 0 \tag{64}$$

$$\int_{V} \mathbf{B} \, \mathrm{d}v = \int_{V} \mu \nabla \phi \, \mathrm{d}v \quad \mathrm{ou} \quad \int_{V} \mu^{-1} \mathbf{B} \, \mathrm{d}v = \int_{V} \nabla \phi \, \mathrm{d}v. \tag{65}$$

Gravimétrie

- Magnétisme Équations de Ma
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• L'approximation discrète de l'équation (64) est obtenue par le théorème de divergence

$$\int_{V} \nabla \cdot \mathbf{B} \, \mathrm{d}v = \int_{S} \mathbf{B} \cdot \hat{\mathbf{n}} \, \mathrm{d}s = 0$$

• En posant un flux sortant positif, la forme discrète de l'intégrale de surface devient, pour le voxel (*i*, *j*, *k*)

$$\int_{S} \mathbf{B} \cdot \hat{\mathbf{n}} \, ds \approx \left(B_{i,j+1/2,k+1/2}^{x} - B_{i-1,j+1/2,k+1/2}^{x} \right) hy_{j}hz_{k} + \left(B_{i+1/2,j,k+1/2}^{y} - B_{i+1/2,j-1,k+1/2}^{y} \right) hx_{i}hz_{k} + \left(B_{i+1/2,j+1/2,k}^{z} - B_{i+1/2,j+1/2,k-1}^{z} \right) hx_{i}hy_{j} = 0 \quad (66)$$

Gravimétrie

- Magnétisme
- Équations de Maxw
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• On divisant (66) par le volume du voxel, on obtient *nc* équations de la forme

$$\begin{split} \left(B_{i,j+1/2,k+1/2}^{x} - B_{i-1,j+1/2,k+1/2}^{x} \right) / hx_{i} \\ &+ \left(B_{i+1/2,j,k+1/2}^{y} - B_{i+1/2,j-1,k+1/2}^{y} \right) / hy_{j} \\ &+ \left(B_{i+1/2,j+1/2,k}^{z} - B_{i+1/2,j+1/2,k-1}^{z} \right) / hz_{k} = 0 \quad (67) \end{split}$$

- Les conditions aux limites complètent la discrétisation.
- On pose que partout aux limites du domaine le champ vaut $\mathbf{B}_0 = (B_0^x, B_0^y, B_0^z).$

Gravimétrie

- Magnétisme
- Équations de Maxwell
- Modèle linéaire
- Volumes finis
- Références
- Annexes

Pour un voxel sur une face où *i* = 1, nous avons une équation de la forme

$$B_{1,j+1/2,k+1/2}^{x}/hx_{1} + \left(B_{i+1/2,j+1,k+1/2}^{y} - B_{i+1/2,j,k+1/2}^{y}\right)/hy_{j} + \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z}\right)/hz_{k} = B_{0}^{x}/hx_{1}.$$
(68)

• Pour un voxel sur une face où i = nx, nous avons

$$- B_{nx-1,j+1/2,k+1/2}^{x} / hx_{nx}$$

$$+ \left(B_{i+1/2,j+1,k+1/2}^{y} - B_{i+1/2,j,k+1/2}^{y} \right) / hy_{j}$$

$$+ \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z} \right) / hz_{k} = -B_{0}^{x} / hx_{nx}.$$
(69)

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

• Sur une arête (e.g. où *i* = 1 et *j* = 1), nous avons une expression de la forme

$$B_{i,j+1/2,k+1/2}^{x}/hx_{i} + B_{i+1/2,j,k+1/2}^{y}/hy_{j} + \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z}\right)/hz_{k} = B_{0}^{x}/hx_{i} + B_{0}^{y}/hy_{j}.$$
 (70)

• Sur un coin (e.g. *i* = 1, *j* = 1 et *k* = 1), nous avons une équation de la forme

$$B_{i,j+1/2,k+1/2}^{x}/hx_{i} + B_{i+1/2,j,k+1/2}^{y}/hy_{j} + B_{i+1/2,j+1/2,k}^{z}/hz_{k} = B_{0}^{x}/hx_{i} + B_{0}^{y}/hy_{j} + B_{0}^{z}/hz_{k}.$$
 (71)

Gravimétrie

- Magnétisme Équations de Maxwe
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• En combinant les équations précédentes, il est possible de construire le système matriciel

$$\mathbf{DB} = \mathbf{q} \tag{72}$$

où **D** est de taille $nc \times nf$, **B** de taille $nf \times 1$ et où **q** est de taille $nc \times 1$ et contient les termes provenant des conditions aux frontières.

- D est appelée matrice de divergence.
- Le système matriciel peut être séparé de telle sorte que

$$\mathbf{DB} = \mathbf{q} \tag{73}$$

$$\begin{bmatrix} \mathbf{D}_{\mathbf{x}} & \mathbf{D}_{\mathbf{y}} & \mathbf{D}_{\mathbf{z}} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{\mathbf{x}} \\ \mathbf{B}_{\mathbf{y}} \\ \mathbf{B}_{\mathbf{z}} \end{bmatrix} = \mathbf{q}$$
(74)

$$\mathbf{D}_{\mathbf{x}}\mathbf{B}_{\mathbf{x}} + \mathbf{D}_{\mathbf{y}}\mathbf{B}_{\mathbf{y}} + \mathbf{D}_{\mathbf{z}}\mathbf{B}_{\mathbf{z}} = \mathbf{q}.$$
 (75)

Gravimétrie

Équations de Maxy

Modèle linéaire

Volumes finis

Références

Annexes

• La matrice **D**_x est construite selon

où

La diagonale principale et la -1^e diagonale de D_x sont remplies. D_x est de taille *nx* × (*nx* − 1), et est répétée *ny* × *nz* fois pour créer D_x.

			φ.								

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

- Ajoutez une méthode fabrique_D à la classe GrilleVF, pour construire la matrice **D**_x.
- **D**_x devra être une matrice *creuse*.
 - Consultez la documentation du module sparse de la librairie scipy;
 - La forme la plus simple à utiliser est coo_matrix;

Magnétisme

Équations de Maxwe

Modèle linéaire

Volumes finis

Références

Annexes

D_v est construite de façon similaire avec

La diagonale principale et la −nx^e diagonale sont remplies.
 D̃_y est de taille nx * ny × nx * (ny − 1), et est répétée nz fois pour créer D_y.

Magnétisme
Équations de Maxwe
Modèle linéaire
Volumes finis
Références
Annexes

- Ajoutez la construction de la matrice **D**_y à votre méthode fabrique_D.
- **D**_v devra également être une matrice creuse.

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

D_z contient des éléments sur la diagonale principale et la *-nx* * *ny^e* diagonale :

Magnétisme Équations de Max

Modèle linéaire

Volumes finis

Références

Annexes

- Ajoutez finalement la construction de **D**_z (creuse) à votre méthode fabrique_D et assemblez la matrice **D**
- fabrique_D doit retourner **D**.
- Ajoutez également une méthode fabrique_q pour construire le vecteur q;
 - Cette méthode doit avoir pour argument B0 (un vecteur contenant les trois composantes du champ ambiant.

Équations de Maxwel

Modèle linéaire

Volumes finis

Références

Annexes

• Testez votre code avec :

```
x = [1, 2, 3, 3.5]
y = [1, 2, 3, 4, 5]
z = np.arange(6)
B0 = np.array([1., 2., 3.])
gvf = GrilleVF(x, y, z)
D = gvf.fabrique_D()
q = gvf.fabrique_q(B0)
```

• Vous devriez obtenir :

Gravimétrie

- Magnétisme Équations de Maxv
- Modèle linéaire Volumes finis
- Annexes

- Pour discrétiser l'équation (65), il est nécessaire de connaître μ (ou μ⁻¹) sur les faces des voxels.
- En interpolant μ, on obtient sa moyenne arithmétique alors qu'en interpolant μ⁻¹ on obtient la moyenne harmonique de μ.
 - La moyenne harmonique est plus représentative de la perméabilité effective;
 - Pour des cellules de tailles différentes, la moyenne harmonique μ_m selon x vaut

$$\mu_m = 2\Delta x \left(\frac{hx_1}{\mu_1} + \frac{hx_2}{\mu_2}\right)^{-1}.$$
 (80)

On discrétise donc μ⁻¹B = ∇φ, qui est séparé en trois parties :

$$\mu^{-1}B_x = \nabla_x \phi \tag{81}$$

$$\mu^{-1}B_y = \nabla_y \phi \tag{82}$$

$$\mu^{-1}B_z = \nabla_z \phi. \tag{83}$$

Gravimétrie

- Magnétisme
- Equations de Maxw
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• Le volume d'intégration couvre une face du voxel de sorte que l'induction *B* est au centre du volume, i.e. en *x*

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_j}^{y_{j+1}} \int_{z_k}^{z_{k+1}} \frac{B_x}{\mu} dx \, dy \, dz = \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_j}^{y_{j+1}} \int_{z_k}^{z_{k+1}} \nabla_x \phi \, dx \, dy \, dz$$
(84)

- Si on assume que *B_x* ne varie pas à l'intérieur du volume d'intégration, on peut le sortir de l'intégrale triple.
- La forme discrète, après avoir divisé par le volume d'intégration, est

$$\frac{B_{i,j+1/2,k+1/2}^{x}}{2\Delta x_{i}} \left(\frac{hx_{i}}{\mu_{i+1/2,j+1/2,k+1/2}} + \frac{hx_{i-1}}{\mu_{i-1/2,j+1/2,k+1/2}} \right) = \frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{\Delta x_{i}}$$
(85)

Gravimétrie

Magnétisme

Équations de Maxwe

Modèle linéaire

Volumes finis

Références

Annexes

• La notation est allégée en posant

$$\eta_{i,j+1/2,k+1/2}^{x} = 2\Delta x_{i} \left(\frac{hx_{i}}{\mu_{i+1/2,j+1/2,k+1/2}} + \frac{hx_{i-1}}{\mu_{i-1/2,j+1/2,k+1/2}} \right)^{-1}$$
(86)

ce qui donne

$$\frac{B_{i,j+1/2,k+1/2}^x}{\eta_{i,j+1/2,k+1/2}^x} = \frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{\Delta x_i}$$
(87)

• On peut maintenant construire une système matriciel de la forme

$$\mathbf{M}_{\mathbf{x}}^{-1}\mathbf{B}_{\mathbf{x}} = \mathbf{G}_{\mathbf{x}}\boldsymbol{\phi} \quad \text{ou} \quad \mathbf{B}_{\mathbf{x}} = \mathbf{M}_{\mathbf{x}}\mathbf{G}_{\mathbf{x}}\boldsymbol{\phi}$$
(88)

où $\mathbf{M}_{\mathbf{x}}$ est une matrice diagonale contenant les coefficients $\eta^{x}_{i,j+1/2,k+1/2}.$

- Magnétisme
- Équations de Maxwell
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• En procédant de façon similaire selon *y* et *z*, on arrive à un système

$$\begin{bmatrix} \mathbf{B}_{\mathbf{x}} \\ \mathbf{B}_{\mathbf{y}} \\ \mathbf{B}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{\mathbf{x}} & 0 & 0 \\ 0 & \mathbf{M}_{\mathbf{y}} & 0 \\ 0 & 0 & \mathbf{M}_{\mathbf{z}} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{\mathbf{x}} \\ \mathbf{G}_{\mathbf{y}} \\ \mathbf{G}_{\mathbf{z}} \end{bmatrix} \boldsymbol{\phi}$$
(89)
$$\mathbf{B} = \mathbf{M} \qquad \mathbf{G} \quad \boldsymbol{\phi}$$

- **G** est appelée matrice de gradient (de taille *nf* × *nc*);
- **M** est appelée matrice des perméabilité (de taille *nf* × *nf*);
- ϕ est le vecteur du potentiel magnétique (de taille $nc \times 1$).

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

Construction des matrices M_{x^\prime} M_y et M_z

• Il faut choisir soigneusement les indices des voxels

Magnétisme

Legadions de max

Volumes finis

Références

Annexes

- Créez une méthode fabrique_M pour construire la matrice M contenant les valeurs de la moyenne harmonique de μ.
- Votre méthode aura pour argument mu, un vecteur de *nc* éléments contenant les valeurs de perméabilité des voxels.
- Notez que **M** est également une matrice creuse.

Gravimétrie

Magnétisme Équations de Maxw

Volumes finis

Références

Annexes

• Testez votre code avec :

```
chi = np.zeros((gvf.nc,))
chi[gvf.ind(2,2,3)] = 1.0
mu0 = 4 * math.pi * 1.e-7;
mu = mu0 * (1.+chi)
M = gvf.fabrique_M(mu)
```

• Vous devriez obtenir :

Magnétisme

Équations de Maxw

Modèle linéaire

Volumes finis

Références

Annexes

Par ailleurs,

- La diagonale principale et la première diagonale sont remplies.
- G_x est de taille (*nx* − 1) × *nx* et répétée *ny* * *nz* fois, ce qui fait que G_x est de taille *nf x* × *nc*.

- La diagonale principale et la *nx^e* diagonale sont remplies.
- G_y est de taille nx ∗ (ny − 1) × nx ∗ ny et répétée nz fois, ce qui fait que G_y est de taille nf y × nc.

 La diagonale principale et la (nx * ny)^e diagonale sont remplies, et G_z est de taille nfz × nc.

						÷		
	0							

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

- Écrivez finalement une méthode fabrique_G pour construire la matrice G contenant les opérateurs du gradient de φ.
- Comme pour les matrices **D** et **M**, **G** doit être creuse.

Gravimétrie

- Magnétisme
- Équations de Maxwell
- Modèle linéaire Volumes finis
- Déférences
- Annexes

- Les équations vues jusqu'à présent permettent de calculer le champ total **B**.
- Nous avons les équations (72)

DB = q

et (89)

 $\mathbf{B} = \mathbf{M}\mathbf{G}\boldsymbol{\phi}$

On résoud le système pour *φ* en insérant les conditions aux limites, i.e.

$$\underbrace{\mathrm{DMG}}_{\mathrm{A}} \underbrace{\phi}_{\mathrm{x}} = \underbrace{\mathbf{q}}_{\mathrm{b}}$$

• On utilise (89) pour finalement calculer **B**.

- Magnétisme Équations de Maxv
- Volumes finis
- -----
- Annexes

- Il est souvent souhaitable de ne modéliser que le champ induit (ou secondaire) par la présence de corps magnétisables, i.e. de calculer l'anomalie magnétique (notée B_s).
- Il est possible d'extraire l'anomalie du champ total en soustrayant à ce dernier la valeur du champ ambiant **B**₀, i.e.

$$\mathbf{B}_{\mathbf{s}} = \mathbf{B} - \mathbf{B}_{\mathbf{0}}.\tag{96}$$

• Cette approche peut être sujette aux erreurs d'arrondi car le champ secondaire est souvent plus faible que **B**₀ par plusieurs ordres de grandeur .

- Magnétisme
- Madèla linéaira
- Volumes finis
- Références
- Annexes

- Il est possible de calculer directement le champ secondaire et de limiter les erreurs d'arrondi.
- Il suffit de décomposer les équations (72) et (89) selon

$$\mathbf{D}\left(\mathbf{B}_{0}+\mathbf{B}_{s}\right)=\mathbf{f}+\mathbf{g}\tag{97}$$

$$\mathbf{M}^{-1} \left(\mathbf{B}_{\mathbf{0}} + \mathbf{B}_{\mathbf{s}} \right) = \mathbf{G} \left(\boldsymbol{\phi}_{\mathbf{0}} + \boldsymbol{\phi}_{\mathbf{s}} \right).$$
(98)

- Le vecteur f est équivalent au vecteur q de l'équation (72), i.e. il est calculé à partir de B₀ sur le pourtour du domaine.
- Le vecteur g est similaire à f, mais est dû au champ induit B_s plutôt que B₀.
 - Si les corps magnétiques sont loin des bords du domaine, on peut assumer que B_s sera très faible au pourtour du domaine et donc que $g \approx 0$.

Gravimétrie

- Magnétisme Équations de Max
- Modèle linéaire Volumes finis
- voidines nins
- Références
- Annexes

• Pour le champ primaire, nous avons ainsi

$$\mathbf{DB}_0 = \mathbf{f} \quad \text{et} \quad \mathbf{M}_0^{-1} \mathbf{B}_0 = \mathbf{G} \boldsymbol{\phi}_0. \tag{99}$$

- M₀ a des éléments non-nuls seulement sur la diagonale principale et η₀ = μ₀, ce qui fait que M₀ = μ₀I.
- Pour le champ secondaire, nous avons alors

$$DB_{s} = g$$
(100)

$$M^{-1}B_{s} = -M^{-1}B_{0} + G\phi_{0} + G\phi_{s}$$

$$= -M^{-1}B_{0} + M_{0}^{-1}B_{0} + G\phi_{s}$$

$$= (\mu_{0}^{-1}I - M^{-1}) B_{0} + G\phi_{s}.$$
(101)

Gravimétrie

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

• On a finalement que

$$\mathbf{B}_{\mathbf{s}} = \left(\mu_0^{-1}\mathbf{M} - \mathbf{I}\right)\mathbf{B}_0 + \mathbf{M}\mathbf{G}\boldsymbol{\phi}_{\mathbf{s}},\tag{102}$$

où $\phi_{\rm s}$ est obtenu en solutionnant

$$\underbrace{\mathbf{DMG}}_{\mathbf{A}} \underbrace{\boldsymbol{\phi}_{\mathbf{s}}}_{\mathbf{x}} = \underbrace{\mathbf{g} - \mathbf{D} \left(\mu_0^{-1} \mathbf{M} - \mathbf{I} \right) \mathbf{B}_{\mathbf{0}}}_{\mathbf{b}}$$
(103)

avec \mathbf{B}_0 un vecteur de la taille de \mathbf{B} contenant les valeurs du champ ambiant.

• La méthode du gradient biconjugué stabilisé peut être utilisée pour résoudre ce système.

Gravimétrie

Magnétisme Équations de Maxv

Volumes finis

_ . . .

Annexes

- Comment calculer **g** alors que **B**_s est inconnu?
- Lelièvre (2003) propose d'approximer les matériaux magnétiques dans le domaine par une sphère de susceptibilité égale à la moyenne volumique des susceptibilités des voxels;
 - on peut ensuite calculer analytiquement la réponse de cette sphère au pourtour du domaine.
- La moyenne volumique ξ est

$$V = \sum_{i=0,\chi_i \neq 0}^{nc-1} v_i$$
(104)
$$\xi = \frac{1}{V} \sum_{i=0}^{nc-1} \chi_i v_i$$
(105)

où v_i est le volume du i^e voxel et χ_i est la susceptibilité de ce voxel.

Gravimétrie

- Magnétisme
- Équations de Maxwel
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Pour une sphère de susceptibilité ξ, les facteurs de démagnétisation sont 1/3;
- Le moment dipolaire de la sphère est ainsi

$$\mathbf{m} = \frac{\mathbf{B}_0}{\mu_0} \frac{\xi V}{1 + \frac{\xi}{3}},\tag{106}$$

avec une magnitude m et une direction unitaire $\hat{\mathbf{m}}$.

• Le champ secondaire à un point *P* au pourtour du domaine est donc

$$\mathbf{B}_{\mathbf{s}}(P) = \frac{\mu_0}{4\pi} \frac{m}{r^3} \left[3(\hat{\mathbf{m}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{m}} \right], \tag{107}$$

où le vecteur pointe du centre de la sphère vers *P*.

Magnétisme

Équations de Maxwell

Modèle linéaire

Volumes finis

Références

Annexes

• Le centre de la sphère est placé au "centre de susceptibilité" (x_c, y_c, z_c) , calculé de façon similaire au centre de gravité, i.e.

$$x_{c} = \frac{\sum_{i=1}^{nc} \chi_{i} x_{i}}{\sum_{i=1}^{nc} \chi_{i}}$$

$$y_{c} = \frac{\sum_{i=1}^{nc} \chi_{i} y_{i}}{\sum_{i=1}^{nc} \chi_{i}}$$

$$z_{c} = \frac{\sum_{i=1}^{nc} \chi_{i} z_{i}}{\sum_{i=1}^{nc} \chi_{i}}$$
(108)

(

Gravimétrie

Magnétisme

Equations de Max

Volumes finis

Références

- La discrétisation du milieu en volumes finis entraîne une erreur.
- Pour évaluer l'ordre de grandeur cette erreur, partons de la série de Taylor à la surface d'un voxel en posant que les voxels sont cubiques de côté *h* :

$$\phi_{i+1/2,j+1/2,k+1/2} = \phi_{i,j+1/2,k+1/2} + \frac{h}{2}\phi'_{i,j+1/2,k+1/2} + \frac{h^2}{8}\phi''_{i,j+1/2,k+1/2} + O(h^3) \quad (109)$$

$$\phi_{i-1/2,j+1/2,k+1/2} = \phi_{i,j+1/2,k+1/2} - \frac{h}{2}\phi'_{i,j+1/2,k+1/2} + \frac{h^2}{8}\phi''_{i,j+1/2,k+1/2} - O(h^3)$$
(110)

Gravimétrie

- Magnétisme
- Équations de Maxwe
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• En soustrayant les équations (109) et (110), on arrive à l'expression de l'opérateur de dérivé centrée suivant :

$$\frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{h} = \phi_{i,j+1/2,k+1/2}' + O(h^2) \quad (111)$$

• Or, **B** est évalué à partir du potentiel ϕ , i.e.

$$B_{i,j+1/2,k+1/2}^{x} = \eta_{i,j+1/2,k+1/2} \left(\frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{h} \right),$$
(112)

où $\eta_{i,j+1/2,k+1/2}$ est la moyenne harmonique des valeurs de perméabilité des voxels voisins à l'interface.

- La précision sur le calcul de **B** est donc de l'ordre de $O(\eta_{\text{harm}}h^2)$.
 - L'erreur est donc proportionnelle à la perméabilité en plus de la taille des voxels au carré.

Magnétisme

Equations de Maxwe

Modèle linéaire

Volumes finis

Références

- Créez une méthode fabrique_cf à partir de votre méthode fabrique_q et ajoutez-y la construction du vecteur **g**
- Suivez pour ce faire l'approche proposée par Lelièvre à la section 4.2 de son mémoire (disponible à http://circle.ubc.ca/handle/2429/13931)
- Cette méthode aura pour arguments B0 et chi

- Magnétisme Équations de Max
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Implémentez finalement une méthode pour modéliser la réponse magnétique pour une distribution spatiale donnée de la susceptibilité χ
- Définissez la méthode selon def magmod(self, chi, B0, xo, usecl, chtot) où
 - xo : points d'observation (ndarray de taille N×3)
 - usecl permet de préciser si **g** doit être considéré (booléen)
 - chtot indique s'il faut calculer le champ total ou \boldsymbol{B}_s (booléen)
- La méthode doit retourner les valeurs de *B_x*, *B_y* et *B_z* interpolées aux points d'observation xo

- Magnétisme
- Modèle linéaire
- Volumes finis
- Références
- Annexes

- Calculez l'anomalie causée par un cube de 1 m³, de susceptibilité $\chi = 0.01$, et situé au centre d'une grille de $33 \times 33 \times 33$ voxels (tous de 1 m³ de volume), pour un champ ambiant **B**₀ = [0, 0, 10000] T.
- Le centre du cube aimanté est à la coordonnée (0,0,0).
- Utilisez le solveur bicgstab avec les paramètres par défaut.
- Tracez un profil de B_x et un profil de B_z pour les points ayant pour coordonnées xp=np.arange(-15.0,15.1) yp=0 zp=10

- Magnétisme
- Équations de Maxwell
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• Comparaison avec la solution analytique pour une sphère de volume égal à celui du cube.

Volumes finis – Exemple

Gravimétrie

- Magnétisme
- Équations de Maxwell
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• Influence du choix des paramètres de convergence de bicgstab

Volumes finis – Exemple

Gravimétrie

- Magnétisme Équations de Maxi
- Modèle linéaire
- Volumes finis
- Références
- Annexes

• Influence de la taille des voxels

Magnétisme

Références

Annexes

Références

Références

Magnétisme

Références

- Blakely, R. J. (1995). *Potential Theory in Gravity and Magnetic Applications*. Cambridge University Press
- Guo, Z.-Y., Liu, D.-J., Pan, Q., and Zhang, Y.-Y. (2015). Forward modeling of total magnetic anomaly over a pseudo-2D underground ferromagnetic pipeline. *Journal of Applied Geophysics*, 113 :14 – 30
- Lelièvre, P. G. (2003). Forward modeling and inversion of geophysical magnetic data. Master's thesis, University of British Columbia

Références

Magnétisme

Références

- Li, X. and Chouteau, M. (1998). Three-dimentional gravity modeling in all space. *Surveys in Geophysics*, 19:339–368
- Plouff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. *Geophysics*, 41:727–741
- Singh, B. and Guptasarma, D. (2001). New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. *Geophysics*, 66(2):521–526

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétique des roches Aimantation rémanente Susceptibilités Démagnétisation

Densité ρ

Gravimétrie

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches Aimantation rémanente Susceptibilités
- C'est la masse par unité de volume;
- Unité habituelle : g/cm³;
- Strictement parlant : masse volumique.
- Pour un milieu poreux saturé, la densité du mélange est

$$\rho_m = (1 - \phi) \rho_h + \phi \rho_f$$

- *φ* est la porosité;
- *ρ_h* la densité de la matrice hôte;
- ρ_f est la densité du fluide.

Densité ρ

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches Aimantation rémanente Susceptibilités

	280				Ignée felsique	Dolomite 2.70	Métamorphique 2.74	Ignée mafique 2.79
3)	270			Calcaire	2.61			
,cm	260		Schiste argileux	- 2.54 -				
(g)	240	Grès	2.42					_
ité	230	2.32						
sus	220							
Ď	210			-				
	200 L			-				
No. d'éc Interva	chantillons e de densi	617 té 1.61-2.76	322 1.71-2.45	487 1.93-2.90	105 2.30-3.11	120 2.36-2.90	114 2.40-3.10	83 2.09-3.17

Gravimétrie	
Magnétisme	
Références	
Annexes	
Densité des roches	
Propriétés magnétiques des roches	
Aimantation rémanente	 Les roches sont un agencement de minéraux qui présentent
Susceptibilités	
Démagnétisation	des proprietes magnetiques différentes;
	• Les différents phénomènes en compétition :
	a diamagnátisma:

- diamagnétisme;
- paramagnétisme;
- ferromagnétisme;
- antiferromagnétisme;
- ferrimagnétisme.

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

- Toutes les substances sont magnétiques à l'échelle de l'atome.
- Un atome se comporte comme un dipôle :
 - spin des électrons;
 - orbite des électrons autour du noyau.
- Physique quantique : max. deux électrons par niveau si les spins sont opposés.
 - Si on a deux électrons par niveau (paire), les moments s'annulent.

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

- Matière pour laquelle tout les niveaux atomiques sont remplis de paires d'électrons.
- Si on applique un champ **H** :
 - la rotation des électrons s'oppose à H;
 - la susceptibilité *χ* est ainsi négative;
 - cet effet est de faible magnitude.
- Cette matière offre une «résistance» au champ magnétique.

Diamagnétisme

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

• Diamagnétisme parfait : le champ est nul à l'intérieur de l'objet.

Diamagnétisme

• diamant.

Gravimétrie	
Magnétisme	
Références	
Annexes	
Densité des roches	
Propriétés magnétiques des roches	
Aimantation rémanente	
Susceptibilités	Quelques roches & matériaux diamagnétiques :
Démagnétisation	
	• graphite;
	• gypse;
	• quartz;
	• sel;
	• cuivre;

-						t	
		LN					

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

- Les niveaux ne sont pas tous remplis :
 - un champ magnétique résulte du spin des électrons solitaires.
- Si on applique un champ **H** :
 - les dipôles des électrons solitaires s'alignent avec H;
 - la susceptibilité *χ* est positive;
 - cette effet est de faible magnitude.

Paramagnétisme

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisatior

- La température T influence le comportement de la matière.
- Une température élevée excite les atomes :
 - limite l'effet du champ H.

Paramagnétisme

Gravimetrie		
Magnétisme		
Références		
Annexes		
Densité des roches		
Propriétés magnétiques des roches		
Aimantation rémanente		
Susceptibilités	• Evennles de substances naram	anótiques.
Démagnétisation	• Exemples de substances parama	igneuques.

- la plupart des métaux; • gneiss;
- dolomie;
- pegmatite;
- syénite.

- Gravimétrie
- Magnétisme
- Références
- Annexes
- Densité des roches
- Propriétés magnétiques des roches
- Aimantation rémanente Susceptibilités
- Démagnétisation

- Existe si, dans certains cristaux paramagnétiques, les moments atomiques sont alignés dans la même direction.
- Occurrence spontanée.
- Les régions où les moments sont alignés sont nommés domaines.
- Les limites entre les domaines sont nommées parois.
- Distribution aléatoire.

Ferromagnétisme

Gravimétrie

Magnétisme

Référence:

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

• Si H nul, la somme des moments est nulle.

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

- Sous l'effet d'un H externe, les parois se déplacent;
 - les domaines orientés selon H croissent;
 - il y a augmentation de la magnétisation.
- Si l'intensité augmente, il y a rotation des domaines;
 - augmentation accrue de la magnétisation.
- Donne lieu a des χ élevés.

Ferromagnétisme

Propriétés magnétiques des roches

• L'alignement des domaines donne lieu à une magnétisation importante (susceptibilité élevée).

Démagnétisé

Croissance préférentielle du domaine

Rotation subite des domaines

Saturation

Ferromagnétisme

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilité:

Démagnétisation

/ н

Gravimétrie	
Magnétisme	
Références	
Annexes	
Densité des roches	
Propriétés magnétiques des roches	
Aimantation rémanente	
Susceptibilités	• Parmi les substances ferromagnétiques :
Démagnétisation	
	• fer;
	• cobalt:
	• nickel.

• Si la température de la matière dépasse le point de Curie, celle-ci passe à l'état paramagnétique.

Antiferromagnétisme

- Magnétisme
- Références
- Annexes
- Densité des roches
- Propriétés magnétiques des roches
- Aimantation rémanente
- Susceptibilités
- Démagnétisatior

• Survient lorsque les dipôles au sein d'un cristal sont antiparallèles.

Ferromagnétisme

Antiferromagnétisme

- La susceptibilité χ est très faible.
- L'hématite (Fe₂O₃) : exemple d'antiferromagnétisme.

Ferrimagnétisme

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

- Les dipôles sont antiparallèles, mais de magnitude différente;
 - le moment net est non nul.
 - magnétite (Fe₃O₄), ilménite (FeTiO₃), titanomagnétite, oxydes de fer ou de fer et titane.
- Donne lieu a des χ élevés.

Ferrimagnétisme

				~	
M				ne	÷ .

Références

Annexes

Densité des roches

Propriétés magnétiques des roches Aimantation rémanente

Susceptibilités

Démagnétisation

• Existe également si le nombre de dipôles d'une direction est supérieur au nombre dans l'autre direction;

• cas de la pyrrhotite.

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilité

Démagnétisation

- Une aimantation qui subsiste en l'absence de **H** est dite rémanente.
- Peut être causée par plusieurs mécanismes :
 - thermorémanence;
 - aimantation dépositionnelle ou détritique;
 - aimantation isotherme;
 - aimantation visqueuse;
 - aimantation chimique.

Aimantation rémanente

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

• Thermorémanence :

- Une roche chauffée au dessus de son point de Curie;
- Ses dipôles vont s'aligner dans le sens du H ambiant en refroidissant;
 - mémoire magnétique.
- Une magnétisation subsiste à T ambiante;
 - proportionnelle à H au refroidissement.

Aimantation rémanente

Gravimétrie

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches
- Aimantation rémanente
- Susceptibilités
- Démagnétisatior

• Aimantation détritique :

- lors de la dépositions des sédiments;
- les minéraux magnétiques s'alignent avec le H ambiant.
- Aimantation isotherme :
 - due aux H exceptionnellement élevés (foudre).
- Aimantation visqueuse;
 - lent déplacement des domaines sous l'effet du **H** ambiant, à T ambiante.
- Aimantation chimique :
 - peut survenir lors d'une transformation cristalline, ou causée par diagénèse ou métamorphisme.

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilité

Démagnétisation

- L'intensité de l'aimantation rémanente M_r peut dépasser l'aimantation induite M_i;
- Le rapport de Königsberger est défini comme $Q = \mathbf{M}_r / \mathbf{M}_i = \mathbf{M}_r / \chi(\mathbf{H}/\mu_0);$
- La direction de M_r n'est pas nécessairement la même que celle de M_i
 - La résultante n'est plus alignée dans le champ H ambiant.

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilité

Démagnétisation

• Le rapport *Q* peut valoir

- ≈ 1 pour les roches ignées (cristallisation lente);
- ≈ 10 pour les roches volcaniques;
- \approx 30-50 pour les roches basaltiques (cristallisation rapide);
- < 1 pour les roches sédimentaires et métamorphique, sauf si Fe présent.

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches
- Aimantation rémanente
- Susceptibilités
- Démagnétisatio

- La plupart des minéraux ont une χ faible;
- La nature magnétique d'une roche est due à une petite quantité de minéraux magnétiques;
- Deux groupes géochimiques :
 - oxydes de fer (les plus courants);
 - magnétite, hématite...
 - sulfures de fer;
 - pyrrhotite.

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Susceptibilités

Démagnétisation

Roche/minéral	Plage	Moyenne
Dolomite	0 - 0.0009	0.0001
Calcaire	0 - 0.003	0.0003
Grès	0 - 0.02	0.0004
Schiste argileux	0.00001 - 0.015	0.0006
Amphibolite		0.0007
Schiste	0.0003 - 0.003	0.0014
Phyllite		0.0015
Gneiss	0.0001 - 0.025	
Quartzite		0.004
Sperpentine	0.003 - 0.017	
Ardoise	0 - 0.035	0.006

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Susceptibilités

Démagnétisatio

Plage	Moyenne
0-0.05	0.0025
0.0002 - 0.035	
0.001 - 0.035	0.017
0.03 - 0.04	
	0.025
0.001 - 0.16	0.055
0.0003 - 0.2	0.060
0.001 - 0.09	0.07
0.0002 - 0.175	0.07
0.0006 - 0.12	0.085
	0.125
0.09 - 0.2	0.15
	0.16
	Plage $0 - 0.05$ $0.0002 - 0.035$ $0.001 - 0.035$ $0.03 - 0.04$ $0.001 - 0.16$ $0.0003 - 0.2$ $0.001 - 0.09$ $0.0002 - 0.175$ $0.0006 - 0.12$ $0.09 - 0.2$

Gravimétrie

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches Aimantation rémanente

Susceptibilités

Démagnétisatior

Roche/minéral	Plage	Moyenne
Graphite		1×10^{-4}
Quartz		-1×10^{-5}
Anhydrite, gypse		-1×10^{-5}
Calcite	$-1 \times 10^{-6}1 \times 10^{-5}$	
Charbon		2×10^{-5}
Argiles		2×10^{-4}
Chalcopyrite		4×10^{-4}
Sphalérite		7×10^{-4}
Cassitérite		9×10^{-4}
Sidérite	$1 \times 10^{-3} - 4 \times 10^{-3}$	
Pyrite	$5 \times 10^{-5} - 5 \times 10^{-3}$	1.5×10^{-3}
Limonite		2.5×10^{-3}
Arsénopyrite		3×10^{-3}

Magnétisme

Références

Annexes

Densité des roches Propriétés magnétiques des roches

Aimantation rémanente

Susceptibilités

Démagnétisation

Roche/minéral	Plage	Moyenne	
Hématite	$5 \times 10^{-5} - 0.035$	6.5×10^{-3}	
Chromite	0.003 - 0.11	7×10^{-3}	
Franklinite		0.43	
Pyrrhotite	0.001 - 6.0	1.5	
Ilménite	0.3 - 3.5	1.8	
Magnétite	1.2 – 19.2	6.0	

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches
- Aimantation rémanente
- Susceptibilités
- Démagnétisation

- Un objet magnétique placé dans un champ H ambiant aura des «pôles» aux extrémités;
 - Magnétisation
 Démagnétisation
 - ---- Champ externe

• Ces pôles génèrent un champ de démagnétisation interne H_d.

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches
- Almantation remanen
- Démagnétisation
- Plus les pôles sont rapprochés, plus **H**_d est élevé;
- Le champ **H**_d a pour effet de réduire l'effet de **H** sur la magnétisation du corps;
- Le champ \mathbf{H}_d est proportionnel à \mathbf{M} ;
- Le facteur de démagnétisation *N* est la constante de proportionnalité

$$\mathbf{H}_d = N\mathbf{M}.\tag{113}$$

Susceptibilité apparente

Gravimétrie

Magnétisme

Références

Annexe

Densité des roches Propriétés magnétiques des roches Aimantation rémanente

Susceptibilités

Démagnétisation

• Le champ interne, dans l'objet, est

$$\mathbf{H}_i = \mathbf{H} - \mathbf{H}_d = \mathbf{H} - N\mathbf{M};$$

• La susceptibilité apparente *k_a* se distingue de la susceptibilité intrinsèque *k* en raison du facteur de démagnétisation :

$$k = \frac{\mathbf{M}}{\mathbf{H}_{i}};$$

$$k_{a} = \frac{\mathbf{M}}{\mathbf{H}};$$

$$\mathbf{M} = k\mathbf{H}_{i} = k_{a} \left(\mathbf{H}_{i} + Nk\mathbf{H}_{i}\right);$$

$$k_{a} = \frac{k}{1 + Nk}.$$
(114)

Le facteur de démagnétisation

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétique des roches Aimantation rémanente
- Susceptibilités
- Démagnétisation

- Le facteur *N* dépend de la forme du corps;
- Règle générale : $N_x + N_y + N_z = 1$;
- Pour une sphère : $N_x = N_y = N_z = \frac{1}{3}$;
- Pour une tige infinie :
 - Perpendiculaire à l'axe : $N_{\perp} = \frac{1}{2}$;
 - Parallèle à l'axe : $N_{\parallel} = 0$;
- Pour une feuille mince infinie :
 - Perpendiculaire au plan : $N_{\perp} = 1$;
 - Parallèle au plan : $N_{\parallel} = 0$;
- On observe donc une anisotropie pour les corps ayant une dimension plus petite que les autres, causée par la démagnétisation;
 - cette anisotropie provoque une déviation de la magnétisation M par rapport au champ H.

- Magnétisme
- Références
- Annexes
- Densité des roches Propriétés magnétiques des roches
- Aimantation rémanente
- Susceptibilités
- Démagnétisation

- La démagnétisation produit un effet notable si k > 0.01;
- En général, significatif pour
 - pyrrhotite massive;
 - roche avec plus de 5-10% de magnétite.
- Pour un corps donné, le facteur *N* est constant si la magnétisation est uniforme.